Electron-ion-plasma boriding of a multilayer nanostructural high-entropy alloy

Y.F. Ivanov ORCID logo , V.V. Shugurov, E.A. Petrikova, N.A. Prokopenko, A.D. Teresov, O.S. Tolkachev show affiliations and emails
Received 14 September 2022; Accepted 01 November 2022;
Citation: Y.F. Ivanov, V.V. Shugurov, E.A. Petrikova, N.A. Prokopenko, A.D. Teresov, O.S. Tolkachev. Electron-ion-plasma boriding of a multilayer nanostructural high-entropy alloy. Lett. Mater., 2022, 12(4s) 433-438
BibTex   https://doi.org/10.22226/2410-3535-2022-4-433-438

Abstract

Structures of a thin-film high-entropy alloy deposited on steel AISI 321.The structure and properties of a high-entropy alloy (HEA) subjected to saturation with boron atoms by a combined electron-ion-plasma method are characterized. On a HEA film of 5 μm thickness deposited on AISI 304 steel, a film (boron + chromium) with a thickness of 1 μm was deposited and then the system “(Cr + B) film / (HEA film deposited on AISI 304 steel) substrate” was irradiated with a pulsed electron beam. It is shown that the wear resistance of the resulting alloy is more than 30 times higher than that of the original HEA film. The microhardness of the alloy is 10.5 % higher than that of HEA in the initial state. It has been revealed that irradiation of the system with a pulsed electron beam leads to the formation of a multi-element surface alloy of composition (at.%) 5.8Al-11.6Ti-12.9Cr-13.0Fe-2.4Ni-13.1Cu-10.4Zr-8.8Nb, the rest (22 at.%) is oxygen and boron. Thus, seven-element HEA of non-stoichiometric composition, the concentration of metal elements of which varies within (5.8 –13.0) at.%, and additionally containing atoms of nickel, oxygen and boron was formed. It has been established that the high tribological and strength properties of the surface alloy are due to the formation of a multiphase submicron-nanocrystalline structure of high-speed cellular crystallization in the modified layer 6 µm thick. High-speed crystallization is accompanied by alloy delamination with the formation of extended interlayers enriched with copper atoms located along the boundaries of crystallization cells.

References (28)

1. L. G. Voroshnin, A. A. Aliev. Boriding from pastes. Astrakhan, ASTU (2006) 287 p. (in Russian) [Л. Г. Ворошнин, А. А. Алиев. Борирование из паст. Астрахань, АГТУ (2006).].
2. S. Sashank, P. D. Babu, P. Marimuthu. Surface & Coatings Technology. 363, 255 (2019). Crossref
3. D. Mikołajczak, M. Kulka, N. Makuch, P. Dziarski. Arch Mech Tech Mater. 36, 35 (2016). Crossref
4. P. Kieruj, N. Makuch, M. Kukliński. MATEC Web of Conferences. 188, 02003 (2018). Crossref
5. S. Dmitriev, V. Malikov, A. Sagalakov, A. Grigorev, A. Ishkov. Advances in Engineering Research. 158, 88 (2018).
6. A. A. Novakova, I. G. Sizov, D. S. Golubok, T. Y. Kiseleval, P. O. Revokatov. J Alloy Compd. 383, 108 (2004). Crossref
7. I. A. Bataev, A. A. Bataev, M. G. Golkovski, D. S. Krivizhenko, A. A. Losinskaya, O. G. Lenivtseva. Appl. Surf. Sci. 284, 472 (2013). Crossref
8. B. D. Lygdenov, V. A. Butukhanov, J. Ying. Modern science-intensive technologies. Region Application. 4 (44), 189 (2015).
9. P. N. Belkin, S. A. Kusmanov. Electronic processing of materials. 54 (5), 1 (2018). Crossref
10. O. A. Gómez-Vargas, J. Solis-Romero, U. Figueroa-López, M. Ortiz-Domínguez. Mater Lett. 176, 261 (2016). Crossref
11. P. N. Belkin, A. L. Yerokhin, S. A. Kusmanov. Surf Coat Technol. 307, 1194 (2016). Crossref
12. A. Singh, E. J. Knystautas. Appl Phys A. 40, 91 (1986). Crossref
13. B. Cantor, I. T. H. Chang, P. Knight, A. J. B. Vincent. Mater. Sci. Eng. A. 375 - 377, 213 (2004). Crossref
14. E. J. Pickering, N. G. Jones. International Materials Reviews. 61, 183 (2016). Crossref
15. Y. F. Ye, Q. Wang, J. Lu, C. T. Liu, Y. Yang. Materials Today. 19, 349 (2016). Crossref
16. V. E. Gromov, S. V. Konovalov, Yu. F. Ivanov, K. A. Osintsev. Structure and properties of high-entropy alloys. Springer Nature, Switzerland, Advanced Structured Materials (2021) 107 p. Crossref
17. D. B. Miracle, O. N. Senkov. Acta Materialia. 122, 448 (2017). Crossref
18. S. Praveen, H. S. Kim. Adv. Eng. Mater. 20, 1 (2018). Crossref
19. A. Günen. Surface & Coatings Technology. 421, 127426 (2021). Crossref
20. A. Erdogan, A. Günen, M. S. Gok, S. Zeytin. Vacuum. 183, 109820 (2021). Crossref
21. B. Storr, L. Moore, K. Chakrabarty, Z. Mohammed, V. Rangari, C.-C. Chen, S. A. Catledge. APL Mater. 10, 061109 (2022). Crossref
22. D. Liu, J. Zhao, Y. Li, W. Zhu, L. Lin. Appl. Sci. 10, 49 (2020). Crossref
23. H. Nakajo, A. Nishimoto. J. Manuf. Mater. Process. 6, 29 (2022). Crossref
24. N. N. Koval, Yu. F. Ivanov, V. N. Devyatkov, V. V. Shugurov, A. D. Teresov, E. A. Petrikova. Izvestija VUZov Fizika. 63, 174 (2020). (in Russian) [Н. Н. Коваль, Ю. Ф. Иванов, В. Н. Девятков, В. В. Шугуров, А. Д. Тересов, Е. А. Петрикова. Известия ВУЗов. Физика. 63, 174 (2020).]. Crossref
25. N. A. Prokopenko, E. A. Petrikova, V. V. Shugurov, M. S. Petykevith, Yu. F. Ivanov, V. V. Uglov. IOP Conf. Series: Materials Science and Engineering. 1093, 012025 (2021). Crossref
26. V. Devyatkov, Yu. Ivanov, O. Krysina, N. Koval, E. Petrikova, V. Shugurov. Vacuum. 143, 464 (2017). Crossref
27. O. Krysina, N. Koval, I. Lopatin, V. Shugurov. Izvestija VUZov Fizika. 57 (11/3), 88 (2014). (in Russian) [О. В. Крысина, Н. Н. Коваль, И. В. Лопатин, В. В. Шугуров. Известия ВУЗов. Физика. 57 (11/3), 88 (2014).].
28. Yu. F. Ivanov, O. V. Krysina, E. A. Petrikova, A. D. Teresov, V. V. Shugurov, O. S. Tolkachev. High Temperature Material Processes. 21 (1), 53 (2017). Crossref

Similar papers

Funding

1. Russian Science Foundation - 19-19-00183, https://rscf.ru/project/19-19-00183/