Effect of microstructure on the strength of nanostructured Invar 36 alloy

N.R. Yusupova, K.A. Krylova, R.R. Mulyukov show affiliations and emails
Received: 08 June 2023; Revised: 06 July 2023; Accepted: 14 July 2023
Citation: N.R. Yusupova, K.A. Krylova, R.R. Mulyukov. Effect of microstructure on the strength of nanostructured Invar 36 alloy. Lett. Mater., 2023, 13(3) 255-259
BibTex   https://doi.org/10.22226/2410-3535-2023-3-255-259


Average grain size and tensile strength of nanostructured Invar alloy (36N) as the function of annealing temperature in different structural states. SEM images of the microstructure of the 36N alloy in the nanostructured state state and after hourly annealing.Invar 36 (containing 64% iron and 36% nickel) is a precision alloy with a specific coefficient of thermal expansion. Because of this, it is used in many special devices from simple radio to lasers or tankers carrying liquefied natural gas. However, the alloy does not have high enough strength and hardness, which limits its applications. In this work, Invar alloy with an increased strength is obtained using deformation nanostructuring by high pressure torsion. After nanostructuring, the microstructure of the alloy is fragmented with an average fragment size of about 100 nm. The results show that the deformation nanostructuring leads to an increase in the microhardness and tensile strength of Invar 36 by factors of 2 and 3.7, respectively, compared to the coarse-grained alloy. Subsequent annealing of the nanostructured alloy results in a decrease in the tensile strength and microhardness, which correlates with an increase in the average grain size during heat treatment. Nevertheless, the strength properties of the nanostructured Invar 36 after annealing at 500°С remain significantly higher than those of the coarse-grained alloy.

References (23)

1. UNS K93600 Invar 36 Material Properties.
2. GOST 10994-74 Interstate standard Precision alloys 1975-01-01 Grades.
3. W. D. Callister. Materials Science and Engineering: An Introduction 8th edition. NY, John Wiley & Sons (2010) 729 p.
4. A. Sahoo, V. R. R. Medicherla. Materials Today: Proceedings. 43 (2), 2242 (2021). Crossref
5. V. Nadutov, D. Vashchuk, P. Volosevych, Y. Svystunov, V. Beloshenko, V. Spuskanyuk, A. Davidenko. Metallofizika Novejshie Technologii. 34, 395 (2012).
6. A. Vinogradov, S. Hashimoto, V. I. Kopylov. Materials Science and Engineering: A. 355 (1-2), 277 (2003). Crossref
7. Y. Tu, J. Xu, J. Zhang, et al. Journal of University of Science and Technology Beijing, Mineral, Metallurgy, Material. 14, 46 (2007). Crossref
8. R. M. Wang, Y. G. Song, Y. F. Han. Journal of Alloys and Compounds. 331, 60 (2000). Crossref
9. A. A. Gulyaev, E. L. Svistunova. Scripta Metallurgica et Materialia. 33, 1497 (1995). Crossref
10. Ch. Wang, Sh. Yuan, Ch. Yao, Zh. Feng. Advanced Materials Research. 690 - 693, 290 (2013). Crossref
11. V. V. Rybin. Large plastic deformations and destruction of metals. Moscow, Metallurgy (1986) 224 p. Crossref
12. I. Kh. Bitkulov. The effect of deformation nanostructuring on the properties of invar Fe-36 %Ni: PhD thesis. Institute for Metals Superplasticity Problems of the Russian Academy of Sciences (2014) 116 p.
13. K. A. Krylova, I. Kh. Bitkulov, R. R. Mulyukov. IOP Conf. Ser.: Mater. Sci. Eng. 1008, 012022 (2021). Crossref
14. R. R. Mulyukov, I. Z. Sharipov, K. A. Bukreeva, I. Kh. Bitkulov. The Physics of Metals and Metallography. 109 (3), 234 (2010). Crossref
15. R. R. Mulyukov, V. A. Kazantsev, Kh. Ya. Mulyukov, A. M. Burkhanov, I. M. Safarov, I. Kh. Bitkulov. Rev. Adv. Mater.Sci. 11, 116 (2006).
16. I. Kh. Bitkulov, A. M. Burkhanov, V. A. Kazantsev, R. R. Mulyukov, Kh. Ya. Mulyukov, I. M. Safarov. The Physics of Metals and Metallography. 102 (1), 91 (2006). Crossref
17. K. A. Krylova, I. Kh. Bitkulov, R. R. Mulyukov. IOP Conf. Series: Materials Science and Engineering. 447, 012015 (2018). Crossref
18. N. R. Yusupova, K. A. Krylova, R. R. Mulyukov. Letters on Materials. 11 (4), 382 (2021). (in Russian) [Н. Р. Юсупова, К. А. Крылова, Р. Р. Мулюков. Письма о материалах. 11 (4), 382 (2021).]. Crossref
19. A. A. Nazarov, R. R. Mulyukov. Nanostructured Materials. Ch. 22. In: Handbook of Nanoscience, Engineering, and Technology. CRC Press, USA (2002) pp. 22-1-22-41. Crossref
20. S. Schumacher, R. Birringer, R. Strauss, H. Gleiter. Acta Metall. 37 (9), 2485 (1989). Crossref
21. R. Werschum, A. Kebler, S. Gruss et al. Annalles de Chimie. 21, 471 (1996).
22. A. A. Samigullina, R. R. Mulyukov, A. A. Nazarov, A. A. Mukhametgalina, Y. V. Tsarenko, V. V. Rubanik. Lett. Mater. 4 (1), 52 (2014). (in Russian) [А.А. Самигуллина, Р.Р. Мулюков, А.А. Назаров, А.А. Мухаметгалина, Ю.В. Царенко, В.В. Рубаник. Письма о материалах. 4 (1), 52 (2014).]. Crossref
23. A. A. Samigullina, A. A. Nazarov, R. R. Mulyukov, Yu. V. Tsarenko, V. V. Rubanik. Rev. Adv. Mater. Sci. 39, 48 (2014).

Similar papers