Thermokinetics of shape recovery of nanostructured titanium nickelide

E.P. Ryklina, D.A. Ashimbaev, S.R. Murygin show affiliations and emails
Received 02 December 2021; Accepted 27 February 2022;
Citation: E.P. Ryklina, D. . Ashimbaev, S.R. Murygin. Thermokinetics of shape recovery of nanostructured titanium nickelide. Lett. Mater., 2022, 12(2) 89-93
BibTex   https://doi.org/10.22226/2410-3535-2022-2-89-93

Abstract

The thermokinetics of shape recovery after bending of Ni-rich titanium nickelide was studied. Loading–unloading procedure was carried out in various phase states using isothermal and non-isothermal modes varying loading strain. The two-stage character of shape recovery under heating is revealed; the hypothesis of its origin is suggested.The microstructure, martensitic transformations (MTs), functional characteristics and thermokinetics of shape recovery of Ni-rich titanium nickelide was studied. Post-deformation annealing at a temperature of 823 K (30 min) after cold drawing with the accumulated logarithmic strain of 0.6 forms a mixed nano-sized grain / subgrain structure of B2 austenite. The training procedure was carried out using isothermal and non-isothermal bending modes. The loading-unloading temperatures were associated with the characteristic temperatures of MTs; the loading strain was varied in the range of 13 –19 %. The specific features of the evolution of functional characteristics when using various loading modes are described. The strain-temperature conditions for the realization of the total shape recovery 17 % and TWSME value 4 % are revealed. The two-stage character of shape recovery after unloading is revealed; the hypothesis of its origin is suggested. The start and finish temperatures of shape recovery vs loading strain are measured. When using the non-isothermal mode with deep cooling under load, the temperature range for shape recovery expands from 35 to 77 K with increasing loading strain. When using the isothermal mode with loading-unloading at a start temperature of the direct MT, the temperature range of shape recovery degrades from 66 to 54 K.

References (27)

1. S. Prokoshkin, V. Brailovski, I. Khmelevskaya, K. Inaekyan, V. Demers, S. Dobatkin, E. Tatyanin. Mater. Sci. Eng. 481, 114 (2008). Crossref
2. A. Churakova, D. Gunderov, M. Kayumova. J. Phys. Conf. Ser. 1758 (1), 012008 (2021). Crossref
3. V. Komarov, I. Khmelevskaya, R. Karelin, S. Prokoshkin, M. Zaripova, M. Isaenkova, G. Korpala, R. Kawalla. J. Alloys. Compd. 797, 842 (2019). Crossref
4. E. Ryklina, S. Prokoshkin, A. Chernavina, N. Perevoshchikova. Inorg. Mater. Appl. Res. 1, 188 (2010). Crossref
5. V. Grishkov, V. Timkin, A. Lotkov, D. Zhapova. AIP Conf. Proc. 2310, 020118 (2020). Crossref
6. A. Bhardwaj, M. Ojha, A. Garudapalli, A. K. Gupta. J. Mater. Proc. Technol. 294, 117132 (2021). Crossref
7. E. Ryklina, K. Polyakova, S. Prokoshkin. Shap. Mem. Superelast. 6 (2), 157 (2020). Crossref
8. E. Ryklina, S. Prokoshkin, K. Vachiyan. IOP Conference Series: Mater. Sci. Eng. 63, 902 (2014). Crossref
9. A. Razov, A. Motorin, G. Nakhatova. J. Alloys Compd. 577, 164 (2013). Crossref
10. E. Ostropiko, Yu. Konstantinov. J. Mater. Sci. and Technol. 37, 794 (2017). Crossref
11. J. Mohd Jani, M. Leary, A. Subic, M. A. Gibson. Mater. Des. 56, 1078 (2014). Crossref
12. E. P. Ryklina, I. Yu. Khmelevskaya, S. D. Prokoshkin, K. E. Inaekyan, R. V. Ipatkin. Mater. Sci. Eng. A. 438 - 440, 1093 (2006). Crossref
13. E. P. Ryklina, I. Yu. Khmelevskaya, S. D. Prokoshkin. Met. Sci. Heat Treat. 46 (5-6), 179 (2004). Crossref
14. I. Yu. Khmelevskaya, E. P. Ryklina, S. D. Prokoshkin, G. A. Markossian, E. P. Tarutta, E. N. Iomdina. Mater. Sci. Eng. A. 481 - 482 (1 - 2 C), 651 (2008). Crossref
15. K. Polyakova, E. Ryklina, S. Prokoshkin. Shape Mem. Superelast. 6 (1), 139 (2020). Crossref
16. T. Poletika, S. Girsova, A. Lotkov, K. Krukovskii. Tech. Phys. 6 (4), 490 (2019). Crossref
17. T. Poletika, S. Girsova, A. Lotkov. Intermet. 106966, 127 (2020). Crossref
18. N. Kuranova, D. Gunderov, A. Uksusnikov, A. Luk’Yanov, L. Yurchenko, E. Prokof’Ev, V. Pushin, R. Valiev. Phys. Met. Metallogr. 108 (6), 556 (2009). Crossref
19. A. Y. Kolobova, E. P. Ryklina, S. D. Prokoshkin, K. E. Inaekyan, V. Brailovskii. Phys. Metals Metallogr. 119 (2), 134 (2018). Crossref
20. S. D. Prokoshkin. Chapter 4. In: V. Brailovski, S. Prokoshkin, P. Terriault, F. Trochu. Montreal: ETS Publ. (2003) 851 p.
21. Yu. Chumlyakov, I. Kireeva, E. Panchenko, I. Karaman, H. J. Maier, E. Timofeeva. J. Alloys Compd. 577, 393 (2013). Crossref
22. K. Madangopal, J. B. Singh. Acta Mater. 48, 1325 (2000).
23. K. Otsuka, X. Ren. Progr. Mater. Sci. 50, 511 (2005). Crossref
24. K. Polyakova, E. Ryklina, S. Prokoshkin. Materials Today: Proc. 4 (3), 4836 (2017).
25. S. D. Prokoshkin, S. Turenne, I. Yu. Khmelevskaya, V. Brailovski, F. Trochu. Can. Metall. Q. 39, 225 (2013). Crossref
26. S. Belyaev, N. Resnina, T. Rakhimov, V. Andreev. Sens. Actuators A Phys. 305, 111911 (2020). Crossref
27. S. Belyaev, N. Resnina, A. Ivanova, I. Ponikarova, E. Iaparova. Shape Mem. Superelast. 6, 223 (2020). Crossref

Similar papers

Funding

1. Russian Science Foundation - Project No. 19-79-10270
2. Ministry of Education and Science of the Russian Federation - No. 075‑15‑2021‑696