Influence of preliminary straining on the recovery stress in TiNi shape memory alloy working element

A.V. Sibirev ORCID logo , S.P. Belyaev, N.N. Resnina show affiliations and emails
Received 12 March 2021; Accepted 19 April 2021;
Citation: A.V. Sibirev, S.P. Belyaev, N.N. Resnina. Influence of preliminary straining on the recovery stress in TiNi shape memory alloy working element. Lett. Mater., 2021, 11(2) 209-212
BibTex   https://doi.org/10.22226/2410-3535-2021-2-209-212

Abstract

Preliminary deformation leads to an increase in the recovery stress only at a stiffness, at which the recovery stresses was close to the value of the yield stress in non-deformed specimens.The influence of the preliminary deformation (in the austenite state) of TiNi working elements on the peculiarities of the strain recovery and stress generation during thermal cycling was investigated. Experiments were carried out under the torsion mode with different values of the stiffness of the working element — counter body system. It is shown that, at low stiffness values (<8 GPa), an increase in the dislocation slip stress by preliminary plastic deformation in austenite does not lead to an increase in the recovery stress. Preliminary deformation leads to an increase in the recovery stress only at a stiffness, at which the recovery stress was close to the value of the yield stress in non-deformed samples. It was found that plastic deformation in austenite led to a decrease in the values of the recovery strain due to the suppression of the reversible strain by the plastic strain. It was shown that there are no qualitative differences in the dependences of the recovery stress and recovery strain values on stiffness obtained for samples where the shape memory effect was initiated by different ways (cooling under the constant load, deformation in martensite state or cooling in the regime of the stress relaxation).

References (14)

1. J. Mohd Jani, M. Leary, A. Subic, M. A. Gibson. Mater. Des. 56, 1078 (2014). Crossref
2. Y. Suzuki, Y. Kagawa. Sensors Actuators A: Phys. 292, 129 (2019). Crossref
3. Y. Kim, T. Jang, H. Gurung, N. A. Mansour, B. Ryu, B. Shin. Sensors Actuators A: Phys. 295, 512 (2019). Crossref
4. W. Huang. Mater. Des. 23, 11 (2002). Crossref
5. M. Follador, M. Cianchetti, A. Arienti, C. Laschi. Smart Mater. Struct. 21, 115029 (2012). Crossref
6. A. Hadi, H. Akbari, B. Tarvirdizadeh, K. Alipour. Sensors Actuators A: Phys. 243, 90 (2016). Crossref
7. K. Conrad, J. Choca, S. Lathers, J. T. La Belle. Crit. Rev. Biomed. Eng. 47, 121 (2019). Crossref
8. A. Sibirev, S. Belyaev, N. Resnina. Sensors Actuators A: Phys. 319, 112568 (2021). Crossref
9. P. Filip, K. Mazanec. J. Mater. Process. Technol. 53, 139 (1995). Crossref
10. P. Filip, K. Mazanec. Mater. Sci. Eng. A. 174, L41 (1994). Crossref
11. Y. G. Lim, S. H. Han, E. S. Choi, W. J. Kim. Scr. Mater. 124, 95 (2016). Crossref
12. P. Šittner, D. Vokoun, G. N. Dayananda, R. Stalmans. Mater. Sci. Eng. A. 286, 298 (2000). Crossref
13. S. P. Belyaev, N. N. Resnina, A. E. Volkov. Mater. Sci. Eng. A. 438 - 440, 627 (2006). Crossref
14. A. Lesota, A. Sibirev, V. Rubanik, V. Rubanik, N. Resnina, S. Belyaev. Sensors Actuators A: Phys. 286, 1 (2019). Crossref

Similar papers

Funding

1. Russian Science Foundation - grant number №19-79-00106