Simulation of isothermal kinetics of martensitic transformation in the Ti40.7Hf9.5Ni44.8Cu5 alloy

E.S. Demidova ORCID logo , S.P. Belyaev, N.N. Resnina show affiliations and emails
Received 24 December 2019; Accepted 10 February 2020;
Citation: E.S. Demidova, S.P. Belyaev, N.N. Resnina. Simulation of isothermal kinetics of martensitic transformation in the Ti40.7Hf9.5Ni44.8Cu5 alloy. Lett. Mater., 2020, 10(2) 170-173
BibTex   https://doi.org/10.22226/2410-3535-2020-2-170-173

Abstract

Expression for dependence of the isothermal martensite volume fraction on holding temperature and time is found. It is shown, that the simulated and experimental data are in good agreement.The realization of forward martensitic transformation under isothermal conditions in NiTi-based alloys has been well studied experimentally, along with the kinetics of this process. However, existing models do not allow the isothermal martensite volume fraction ΦM to be estimated, hence the influence of holding temperature or time on the ΦM value could not be calculated. The Johnson-Mehl-Avrami-Kolmogorov (JMAK) theory is normally used to describe isothermal kinetics, but it has not been applied for martensite transformation, which occurs in shape-memory alloys during holding at a constant temperature. Thus, the aim of the present study is to adapt the JMAK theory and use to estimate ΦM variation with time during holding of Ti40.7Hf9.5Ni44.8Cu5 alloy at different temperatures. The JMAK equation allows the variation of the isothermal martensite volume fraction with time during holding at constant temperatures to be approximated. It was applied to estimate experimental ΦM(t) curves in Ti40.7Hf9.5Ni44.8Cu5 alloy and a good approximation was established. The dependencies of JMAK-like equation parameters on the holding temperature were also found and approximated. Thus, the expression for the dependence of the isothermal martensite volume fraction on holding temperature and time was found and calculation of the ΦM(t) curves was carried out. The simulated and experimental data for the Ti40.7Hf9.5Ni44.8Cu5 shape memory alloy were shown to be in good agreement.

References (17)

1. T. Fukuda, S. Yoshida, T. Kakeshita. Scripta Mater. 68, 984 (2013). Crossref
2. T. Fukuda, M. Todai, T. Kakeshita. Scripta Mater. 69, 239 (2013). Crossref
3. T. Fukuda, T. Kawamura, T. Kakeshita. J Alloy Compd. 683, 481 (2016). Crossref
4. N. Resnina, S. Belyaev, A. Shelyakov. Scripta Mater. 112, 106 (2016). Crossref
5. E. Demidova, S. Belyaev, N. Resnina, A. Shelyakov. J Therm Anal Calorim. 139, 2965 (2020). Crossref
6. N. Resnina, S. Belyaev, E. Demidova, A. Ivanov, V. Andreev. Mater Lett. 228, 348 (2018). Crossref
7. Y. Ji, D. Wang, X. Ding, K. Otsuka, X. Ren. Phys Rev Lett. 114, 055701 (2015). Crossref
8. S. Kustov, D. Salas, E. Cesari, R. Santamarta, J. Van Humbeeck. Acta Mater. 60, 2578 (2012). Crossref
9. D. Salas, E. Cesari, J. VanHumbeeck, S. Kustov. Scripta Mater. 74, 64 (2014). Crossref
10. S. Kustov, D. Salas, R. Santamarta, E. Cesari, J. Van Humbeeck. Scripta Mater. 63, 1240 (2010). Crossref
11. S. D. Prokoshkin, I. Yu. Khmelevskaya, S. V. Dobatkin, I. B. Trubitsyna, E. V. Tatyanin, V. V. Stolyarov, E. A. Prokofiev. Acta Mater. 53, 2703 (2005). Crossref
12. T. Kakeshita, T. Fukuda, T. Saburi. Scripta Mater. 34, 147 (1996). Crossref
13. J. W. Christian. The Theory of Transformations in Metals and Alloys. Oxford, Pergamon Press (1965) 1200 p.
14. M. Avrami. J Chem Phys. 8, 212 (1940). Crossref
15. MSE 2090: Introduction to Materials Science Chapter 10, Phase Transformations. URL: http://people.virginia.edu/~lz2n/mse209/Chapter10.pdf.
16. S. Belyaev, N. Resnina, A. Shelyakov. Smart Mater Struct. 24, 045013 (2015). Crossref
17. A. I. Lotkov, A. A. Baturin. Pozitronnaya spectroscopiya B2-soedineniy titana. Tomsk, Izdatelstvo nauchno-technicheskoy literatury (2004) 231 p. (in Russian) [А. И. Лотков, А. А. Батурин. Позитронная спектроскопия B2-соединений титана. Томск, Издательство научно-технической литературы (2004) 231 с.].

Similar papers

Funding