The formation of martensite crystals with a degenerate structure of transformation twins

M.P. Kashchenko, N.M. Kashchenko, V.G. Chashchina
Received: 09 September 2018; Revised: 28 September 2018; Accepted: 08 October 2018
Citation: M.P. Kashchenko, N.M. Kashchenko, V.G. Chashchina. The formation of martensite crystals with a degenerate structure of transformation twins. Letters on Materials, 2018, 8(4) 429-434
BibTex   DOI: 10.22226/2410-3535-2018-4-429-434

Abstract

The red squares correspond to the excited cells that generate the main component of the twin structure, marked in orange.
The transition to an ideal degenerate twin structure with contacting main components is shown.The dynamic theory of martensitic transformation explains the phenomenon of initiation of fine structure of transformation twins as the result of coordinated action of relatively long-wave displacements (ℓ-waves) with more short-wave displacements (s-waves). Being a part of controlling wave process, ℓ-waves provide habit formation, whereas s-waves play the leading part in initiation of the main component of twin structure (TS). It was shown that the dynamic theory allows consideration of degenerate TS (DTS) formation as a private case of TS when twin component volume is converted to zero. In this work the case of DTS is discussed by the example of crystals with habits {110}. The peculiarity of this variant consists in the fact that in order to describe the morphology of transformation it’s enough to consider only longitudinal waves running along axes <100> as a part of controlling wave process. In particular, habit (101) may be matched with a pair of ℓ-waves with velocities along [100] and [001] and a pair of s-waves with velocities along [100] and [010]. At the same time, the condition ds = λs/4, where λs is wavelength of s-waves, and ds is transversal (in directions [100] and [010]) size of initial exited (oscillatory) s- ℓ- cell with longitudinal size ds ≪dℓ <λℓ/2, conforms DTS formation. For martensite transformations FCC-BCT, BCC-FCT, FCC-FCT, the transition to finish deformations and the connection of the values of tetragonality of martensite and volume effect with one of characteristic main values of deformation tensor are discussed.

References (28)

1.
В. А. ВiIbу, J. W. Christian, Martensitic Transformations. The Mechanism of Phase Transformations in Metals. The Institute of Metals. London (1956).
2.
S. Miyazaki, K. Otsuka, C. M. Wayman. Acta Metall. 377, 1873 (1989).
3.
M. P. Kashchenko, V. G. Chashchina, Phys. Usp. 54(4), 331 (2011). DOI: 10.3367/UFNr.0181.201104a.0345
4.
M. P. Kashchenko, V. G. Chashchina. Letters on materials. 4(4), 307 (2014). DOI: 10.22226/2410‑3535‑2014‑4‑307‑314
5.
T. Maki, C. M. Wayman. Proc. 1st JIM Int. Symp. on New Aspects of MartensiticTransformation, Suppl. Trans. JIM. 17, 69 (1976).
6.
V. M. Schastlivtsev, Yu. V. Kaletina, E. A. Fokina. Martensitic Transformations in Magnetic Field. Ekaterinburg, UrO RAN (2007) 323 p. (in Russian) [В. М. Счастливцев, Ю. В. Калетина, Е. А. Фокина. Мартенситные превращения в магнитном поле. Екатеринбург, УрО РАН (2007) 323 c.]
7.
M. S. Wechsler, D. S. Lieberman, T. A. Read. Trans. AIME. 197, 1503 (1953).
8.
J. S. Bowles, J. K. Mackenzie. Acta Metall. 2, 129 (1954).
9.
J. S. Bowles, J. K. Mackenzie. Acta Metall. 2, 138 (1954).
10.
J. S. Bowles, J. K. Mackenzie. Acta Metall. 2, 224 (1954).
11.
A. B. Greninger, A. R. Troiano. Metal. Trans. 185, 590 (1949).
12.
K. M. Knowles, D. A. Smith. Acta metall. 29, 101 (1981). DOI: 10.1016/0001-6160(81)90091-2
13.
M. P. Kashchenko, V. G. Chashchina, S. V. Vikharev. Phys. Met. Metallogr. 110, 200 (2010). DOI: 10.1134/S0031918X10090024
14.
M. P. Kashchenko, V. G. Chashchina, S. V. Vikharev. Phys. Met. Metallogr. 110, 305 (2010). DOI: 10.1134/S0031918X10100017
15.
M. P. Kashchenko, V. G. Chashchina. Dynamic Theory of γ-α Transformation in Iron Based Alloys. Solving the Problem of the Formation of Twinned Martensite Crystals. Lambert Academic., Saarbrucken, Germany (2012) 110 p.
16.
M. P. Kashchenko, V. G. Chashchina. Materials Science Forum. 738 – 739, 3 (2013). DOI: 10.4028/www.scientific.net/MSF.738-739.3
17.
M. P. Kashchenko, V. G. Chashchina. Phys. Met. Metallogr. 114, 821 (2013). DOI 10.1134/S0031918X1308005X
18.
M. P. Kashchenko, V. G. Chashchina. Phys. Mesomech. 19, 107 (2016). DOI: 10.1134/S0031918X17040056
19.
M. P. Kashchenko, I. F. Latypov, V. G. Chashchina. Letters on materials. 7(2), 146 (2017). DOI: 10.22226/2410‑3535‑2017‑2‑146‑150
20.
M. P. Kashchenko, V. G. Chashchina. Phys. Met. Metallogr. 118(4), 311 (2017). DOI: 10.1134/S0031918X17040056
21.
M. P. Kashchenko, N. M. Kashchenko, V. G. Chashchina. Phys. Met. Metallogr. 118(1), 311 (2018). DOI: 10.1134/S0031918X1801009X
22.
O. M. Ivasishin, N. S. Kosenko, S. V. Shevchenko. J. Phys. IV. 5, 1017 (1995).
23.
G. V. Kurdyumov, L. M. Utevskii, R. I. Entin. Transformations in iron and steel. Moscow, Nauka (1977) 238 p. (in Russian) [Г. В. Курдюмов, Л. М. Утевский, Р. И. Энтин. Превращения в железе и стали. Москва, Наука (1977) 238 с.]
24.
H. Warlimont, L. Delaey. Martensitic Transformations in Copper-, Silver-, and Gold-Based Alloys. Oxford, Pergamon Press (1974).
25.
V. G. Pushin, V. V. Kondratyev, V. N. Khachin. Pre-transition phenomena and martensitic transformations. Ekaterinburg, UrO RAN (1998) 368 p. (in Russian) [В. Г. Пушин, В. В. Кондратьев, В. Н. Хачин. Предпереходные явления и мартенситные превращения. Екатеринбург, УрО РАН (1998) 368 с.]
26.
V. G. Pushin, E. S. Belosludtseva, V. A. Kazantsev, N. I. Kourov. Inorganic Materials: Applied Research. 4(4), 340 (2013). DOI: 10.1134/S2075113313040084
27.
M. P. Kashchenko, V. G. Chashchina. Phys. Met. Metallogr. 105(6), 537 (2008). DOI: 10.1134/S0031918X08060021
28.
M. P. Kashchenko, V. G. Chashchina. Phys. Met. Metallogr. 106(1), 14 (2008). DOI: 10.1134/S0031918X0807003X