Antibacterial nanospike surface obtained by high-fluence Ar+ bombardment of nanostructured titanium

R.R. Mulyukov, R.K. Khisamov ORCID logo , A.M. Borisov ORCID logo , A.K. Baimiev, M.A. Ovchinnikov ORCID logo , R.R. Timiryaev, A.A. Vladimirova show affiliations and emails
Received  16 November 2023; Accepted  26 November 2023
Citation: R.R. Mulyukov, R.K. Khisamov, A.M. Borisov, A.K. Baimiev, M.A. Ovchinnikov, R.R. Timiryaev, A.A. Vladimirova. Antibacterial nanospike surface obtained by high-fluence Ar+ bombardment of nanostructured titanium. Lett. Mater., 2023, 13(4) 373-376
BibTex   https://doi.org/10.22226/2410-3535-2023-4-373-376

Abstract

Antibacterial nanospike morphology on nanostructured titanium obtained by Ar bombardment In order to find the ways of giving antibacterial properties to implants, a homogeneous nanospike morphology on titanium surface was formed by deformation nanostructuring followed by bombardment by high-fluence Ar+ ions. Taking account of the fact that antibacterial properties were studied on an example of E. coli bacteria, nanospikes having a height of 200 nm and spacings about 100 nm were formed. Studies using fluorescence microscopy have shown that when E. coli bacteria are applied to a smooth titanium surface, the bacteria form clusters of cells similar to the biofilm structure. In contrast to this, clusters of E. coli are not observed on the nanospike surface, i. e., it has antibacterial properties.

References (15)

1. A. Jaggessar, H. Shahali, A. Mathew, P. K. D. V. Yarlagadda. J. Nanobiotechnol. 15, 64 (2017). Crossref
2. S. Ferraris, S. Spriano. Mater. Sci. Eng. C. Mater. Biol. Appl. 61, 965 (2016). Crossref
3. I. Saraeva, S. I. Kudryashov, P. Danilov, N. Busleev, E. R. Tolordava, A. A. Rudenko, D. Zayarny, A. Ionin, Y. M. Romanova. Sensors. 20, 2466 (2020). Crossref
4. J. Jenkins, J. Mantell, C. Neal, A. Gholinia, P. Verkade, A. H. Nobbs, B. Su. Nat. Commun. 11, 1626 (2020). Crossref
5. K. Mukaddam, M. Astasov-Frauenhoffer, E. Fasler-Kan, L. Marot, M. Kisiel, R. Steiner, F. Sanchez, E. Meyer, J. Köser, M. M. Bornstein, S. Kuhl. Nanomaterials. 12, 1065 (2022). Crossref
6. D. T. Elliott, R. J. Wiggins, R. Dua. J. Biomed. Mater. Res. 109, 973 (2021). Crossref
7. A. A. Nazarov, R. R. Mulyukov. Nanostructured Materials. Ch. 22. In: Handbook of Nanoscience, Engineering, and Technology. CRC Press, USA (2002) pp. 22-1-22-41. Crossref
8. A. M. Borisov, E. S. Mashkova, M. A. Ovchinnikov, R. K. Khisamov, R. R. Mulyukov. J. Surf. Invest. 15, S66 (2021). Crossref
9. A. M. Borisov, E. S. Mashkova, M. A. Ovchinnikov, R. K. Khisamov, R. R. Mulyukov. Tech. Phys. Lett. 48, 55 (2022). Crossref
10. A. M. Borisov, E. S. Mashkova, M. A. Ovchinnikov, R. K. Khisamov, I. I. Musabirov, R. U. Shayakhmetov, R. R. Mulyukov. J. Surf. Invest. 17, 54 (2023). Crossref
11. N. R. Yusupova, K. A. Krylova, R. R. Mulyukov. Lett. Mater. 13 (3), 255 (2023). Crossref
12. E. S. Mashkova, V. A. Molchanov. Medium-Energy Ion Reflection from Solids. North-Holland, Amsterdam (1985) 444 p.
13. An. Kh. Baymiev, R. S. Yamidanov, R. T. Matniyazov, D. K. Blagova, Al. Kh. Baymiev, A. V. Chemeris. Mol. Biol. 45, 904 (2011). Crossref
14. H. K. Lin, G. Y. Li, S. Mortier, P. Bazarnik, Y. Huang, M. Lewandowska, T. G. Langdon. J. All. Com. 784, 653 (2019). Crossref
15. R. T. Murzaev, D. V. Bachurin, A. A. Mukhametgalina, M. A. Murzinova, A. A. Nazarov. Phys. Lett. A. 384, 126906 (2020). Crossref

Similar papers

Funding

1. The work is supported by the State Assignment of IMSP RAS -