Study of second phase precipitates in nanostructured commercially pure titanium

L.R. Rezyapova, R.R. Valiev, V.D. Sitdikov, R.Z. Valiev show affiliations and emails
Received: 04 June 2021; Revised: 29 July 2021; Accepted: 08 August 2021
This paper is written in Russian
Citation: L.R. Rezyapova, R.R. Valiev, V.D. Sitdikov, R.Z. Valiev. Study of second phase precipitates in nanostructured commercially pure titanium. Lett. Mater., 2021, 11(3) 345-350


Heat treatment at 700 ° C of commercially pure grade 4 - Grade 4 titanium results in the release of β-modification nanoparticles. The deformation of the material leads to an increase in the volume fraction of particles precipitated after annealing.The results of studies on the process of precipitation of dispersed second phases in commercially pure titanium Grade 4 and the effect of secondary precipitates on its structure and mechanical properties in two states, coarse-grained and nanostructured ones, are presented. The nanostructured state was obtained by high-pressure torsion (HPT) under a pressure of 6 GPa up to N =10 revolutions at room temperature. A particular consideration is given to the study of changes in the phase composition and microstructure of titanium subjected to deformation processing after annealing at an elevated temperature of 700°C for 30 minutes. In this work, by means of studies in a transmission electron microscope, it was shown that at a temperature of 700°C and higher, in the structure of the samples, nanoparticles of the second phases which differ in size and morphology are precipitated in both states. The nature of the observed particles was studied in SEM, by indexing the electron diffraction patterns taken from the particles, and by carrying out X-ray phase analysis by the “transmission” method. Particles of the second phases are modifications of the high-temperature β-phase of titanium. The HPT treatment of the alloy, according to the XRD data, leads to an increase in the volume fraction of precipitated particles after annealing and, as a result, to an increase in the microhardness of the states under study. The results of microhardness measurements at varying regimes of deformation and annealing are presented. Combination of HPT up to N = 5 revolutions and annealing at 700°C for 30 minutes followed by additional torsion straining also up to N = 5 revolutions provides the highest microhardness values in commercially pure titanium, which reaches 423 HV.

References (18)

1. A. I. Igolkin. Titan v medicine. 1, 86 (1993). (in Russian) [А. И. Иголкин. Титан в медицине. 1, 86 (1993).].
2. F. H. Froes, M. Qian. Titanium in Medical and Dental Applications. UK, Woodhead Publishing, Duxford, UK (2018) 630 p. Crossref
3. R. Z. Valiev, I. V. Aleksandrov. Ob’yemnye nanostrukturnye materialy. Moscow, Akademkniga (2007) 398 p. (in Russian) [Р. З. Валиев, И. В. Александров. Объемные наноструктурные материалы. Москва, Академкнига (2007) 398 с.].
4. R. Z. Valiev, A. P. Zhilyaev, T. G. Langdon. Bulk nanostructured materials: Fundamentals and applications. NJ. USA, TMS-Wiley, Hoboken (2014) 440 p. Crossref
5. А. P. Zhilyaev, T. G. Langdon. Progr. Mater. Sci. 53, 893 (2008). Crossref
6. I. P. Semenova, A. I. Korshunov, G. X. Salimgareeva, V. V. Latysh, Ye. B. Yakushina, R. 3. Valiev. The Physics of Metals and Metallography. 106 (2), 216 (2008). Crossref
7. Y. T. Zhu, Y. R. Kolobov, G. P. Grabovetskaya, V. V. Stolyarov, N. V. Girsova, R. Z. Valiev. Journal of Materials Research. 18 (04), 1011 (2003). Crossref
8. R. Z. Valiev, E. V. Parfenov, G. I. Raab, I. P. Semenova. Materials transactions. 60 (7), 1356 (2019). Crossref
9. G. P. Grabovetskaya, Yu. R. Kolobov, K. V. Ivanov, O. V. Zabudchenko. Fiz. mezomekh. 7 (2), 22 (2004). (in Russian) [Г. П. Грабовецкая, Ю. Р. Колобов, К. В. Иванов, О. В. Забудченко. Физ. мезомех. 7 (2), 22 (2004).].
10. M. S. Kazachenok, A. V. Panin, Yu. F. Ivanov, Yu. I. Pochivalov, R. Z. Valiev. Fiz. mezomekh. 8 (4), 37 (2005). (in Russian) [М. C. Казаченок, А. В. Панин, Ю. Ф. Иванов, Ю. И. Почивалов, Р. З. Валиев. Физ. мезомех. 8 (4), 37 (2005).].
11. S. P. Malysheva. The Physics of Metals and Metallography. 95 (4), 98 (2003). (in Russian) [С. П. Малышева. Физика металлов и металловедение. 95 (4), 98 (2003).].
12. G. S. Dyakonov, S. Mironov, N. A. Enikeev, I. P. Semenova, R. Z. Valiev, S. L. Semiatin. Materials Science and Engineering: A. 742, 89 (2019). Crossref
13. L. Ya. Gradus. Rukovodstvo po dispersionnomu analizu metodom mikroskopii. Moscow, Khimiya (1979) 232 p. (in Russian) [Л. Я. Градус Л. Я. Руководство по дисперсионному анализу методом микроскопии. Москва, Химия (1979) 232 с.].
14. V. D. Sitdikov, M. Yu. Murashkin, R. Z. Valiev. Journal of Alloys and Compounds. 735, 1792 (2018). Crossref
15. M. J. Kriegel, M. Rudolph, A. Kilmametov, B. B. Straumal, J. Ivanisenko, O. Fabrichnaya, D. Rafaja. Metals. 10 (3), 402 (2020). Crossref
16. W. Zhou, R. Sahara, K. Tsuchiya. Journal of Alloys and Compounds. 727, 579 (2017). Crossref
17. I. Sabirov, N. A. Enikeev, M. Yu. Murashkin, R. Z. Valiev. Bulk Nanostructured Materials with Multifunctional Properties. Springer (2015) 161 p. Crossref
18. E. S. Howard, R. K. Fuyat, G. M. Ugrinic. Standard X-ray Diffraction Powder Patterns. National Bureau of Standards Circular 539. 3 (1954).

Similar papers