Effect of HPT straining and further natural aging on the structure and hardness of aluminum alloy 1965 with nanosized TM aluminides

M.V. Markushev, E.V. Avtokratova, S.V. Krymskiy, V.V. Tereshkin, O.S. Sitdikov show affiliations and emails
Received  28 October 2022; Accepted  08 November 2022
Citation: M.V. Markushev, E.V. Avtokratova, S.V. Krymskiy, V.V. Tereshkin, O.S. Sitdikov. Effect of HPT straining and further natural aging on the structure and hardness of aluminum alloy 1965 with nanosized TM aluminides. Lett. Mater., 2022, 12(4s) 463-468
BibTex   https://doi.org/10.22226/2410-3535-2022-4-463-468

Abstract

HPT at 6 GPa pressure in the range of 0-10 rotations of pre-quenched ingot of the commercial aluminum alloy 1965 resulted in consequential transformation of well-defined dense dislocation wall/cell structure to non-equilibrium nanofragmented one and near two-fold hardenning. The alloy strengthening and/or softening during further natural aging up to 500 hrs were within 10-15% and controlled by simultaneous decomposition of the aluminum solid solution and recovery of its deformation structure.Pre-quenched samples cut from a homogenized ingot of commercial aluminum alloy 1965 with a grain size of about 21 µm were compressed at 6 GPa and then strained by torsion up to 10 revolutions at room temperature. TEM, SEM and XRD analyses showed that the strengthening / softening of the alloy during further natural aging up to 500 hrs was controlled by simultaneous decomposition of the aluminum solid solution and recovery of its deformation structure. It was found that the two-level nanostructuring of the alloy (precipitates and matrix) is accompanied by more than twofold strengthening up to a hardness of about 250 HV. The main contribution was made by dislocation and structural hardening due to the formation of a highly work-hardened structure of the nanofragmented type. During subsequent aging, the change in hardness was controlled by both the preliminary strain and the aging time. A continuous increase in strength with strain and aging time was found in the samples after pressing and torsion up to 1 revolution. In other conditions, strengthening was preceded by softening, the magnitude and duration of which were also proportional to the strain. The nature of the alloy behavior and the role of nanosized aluminides of transition metals are discussed in details.

References (23)

1. R. R. Mulyukov, R. M. Imayev, A. A. Nazarov, M. F. Imayev, V. M. Imayev. Superplasticity of Ultrafine Grained Alloys: Experiment, Theory, Technologies. Nauka, Moscow (2014) 284 p. (in Russian) [Р. Р. Мулюков, Р. М. Имаев, А. А. Назаров, М. Ф. Имаев, В. М. Имаев Сверхпластичность ультрамелкозернистых сплавов: эксперимент, теория, технологии. Наука, Москва (2014) 284 с.].
2. M. V. Markushev. In: Perspektivnye Materialy. Vol. 8 (ed. by D. L. Merson). TSU Press, Togliatti, Russia (2019) p. 227. (in Russian) [М. В. Маркушев. Перспективные материалы. Т. VIII, учебное пособие (под ред. Д. Л. Мерсона). Тольятти, Изд-во ТГУ (2019) с. 227.].
3. M. V. Markushev, A. Vinogradov. In: Severe Plastic Deformation: Towards Bulk Production of Nanostructured Materials (ed. by B. Altan). Nova Science Publishers, USA (2006) 233 p.
4. Y. Estrin, A. Vinogradov. Acta Mater. 61, 782 (2013). Crossref
5. T. G. Langdon. Acta Mater. 61, 7035 (2013). Crossref
6. I. A. Ovid’ko, R. Z. Valiev, Y. T. Zhu. Progr. Mater. Sci. 94, 462 (2018). Crossref
7. I. Sabirov, M. Yu. Murashkin, R. Z. Valiev. Mater. Sci. Eng. 560 A, 1 (2013). Crossref
8. E. Avtokratova, O. Sitdikov, M. Markushev, M. Linderov, D. Merson, A. Vinogradov. Mater. Sci. Eng. 806 A, 140818 (2021). Crossref
9. E. Ma. JOM. 58.4, 49 (2006). Crossref
10. S. Krymskiy, O. Sitdikov, E. Avtokratova, M. Markushev. Trans. Nonferrous Met. Soc. China. 30, 14 (2020). Crossref
11. E. Avtokratova, O. Sitdikov, O. Latypova, M. Markushev. Facta Universitatis. Series: Mech. Eng. 18, 255 (2020). Crossref
12. S. V. Krymskiy, P. A. Nikulin, M. Yu. Murashkin, M. V. Markushev. Lett. Mater. 1 (3), 167 (2011). (in Russian) [С. В. Крымский, П. А. Никулин, М. Ю. Мурашкин, M. В. Маркушев. Письма о материалах. 1 (3), 167 (2011).]. Crossref
13. S. V. Krymskiy, D. K. Nikiforova, M. Yu. Murashkin, M. V. Markushev. Prosp. Mater. 12, 387 (2011). (in Russian) [С. В. Крымский, Д. К. Никифорова, М. Ю. Мурашкин, М. В. Маркушев. Перспективные материалы. 12, 387 (2011).].
14. M. V. Markushev, E. V. Avtokratova, S. V. Krymskiy, O. Sh. Sitdikov. J. Alloys Compd. 743, 773 (2018). Crossref
15. M. V. Markushev, E. V. Avtokratova, O. Sh. Sitdikov. Lett. Mater. 7 (4), 459 (2017). Crossref
16. L. F. Mondolfo. Structure and properties of aluminum alloys. Metallurgy, Moscow (1979) 640 p. (in Russian) [Л. Ф. Мондольфо. Структура и свойства алюминиевых сплавов. Металлургия, Москва (1979) 640 с.].
17. M. V. Markushev, E. V. Avtokratova, Yu. L. Burdastykh, S. V. Krimsky, O. Sh. Sitdikov. Lett. Mater. 10 (4), 517 (2020). (in Russian) [М.В. Маркушев, Е.В. Автократова, Ю.Л. Бурдастых, С.В. Крымский, О.Ш. Ситдиков. Письма о материалах. 10 (4), 517 (2020).]. Crossref
18. F. J. Humphreys, M. Hatherly. Recrystallization and Related Annealing Phenomena. Elsevier (2004) 658 p. Crossref
19. T. Sakai, A. Belyakov, R. Kaibyshev, H. Miura, J. J. Jonas. Progr. Mater. Sci. 60, 130 (2014). Crossref
20. I. G. Brodova, I. G. Shirinkina, A. N. Petrova. Lett. Mater. 1 (1), 32 (2011). (in Russian) [И. Г. Бродова, И. Г. Ширинкина, А. Н. Петрова. Письма о материалах. 1 (1), 32 (2011).]. Crossref
21. R. Z. Valiev, I. V. Aleksandrov. Bulk Nanostructured Metallic Materials: Production, Structure and Properties. Moscow, Akademkniga (2007) 398 p. (in Russian) [Р. З. Валиев, И. В. Александров. Объемные наноструктурированные металлические материалы: получение, структура и свойства. Москва, Академкнига (2007) 398 с.].
22. S. G. Alieva, M. B. Altman, S. M. Ambartsumyan et al. Promyshlennye aluminievye splavy. Moskva, Metallurgiya (1984) 528 p. (in Russian) [С. Г. Алиева, М. Б. Альтман, С. М. Амбарцумян и др. Промышленные алюминиевые сплавы. Москва, Металлургия (1984) 528 с.].
23. A. Deschamps, F. De Geuser, Z. Horita, S. Lee, G. Renou. Acta Mater. 66, 105 (2014). Crossref

Similar papers

Funding

1. Ministry of Science and Higher Education of Russian Federation - АААА-1919‑ 119021390107‑8