Developing magnesium-based composites through high-pressure torsion

M.M. Castro, P.R. Pereira ORCID logo , R.B. Figueiredo, T.G. Langdon show affiliations and emails
Received 24 September 2019; Accepted 09 October 2019;
Citation: M.M. Castro, P.R. Pereira, R.B. Figueiredo, T.G. Langdon. Developing magnesium-based composites through high-pressure torsion. Lett. Mater., 2019, 9(4s) 541-545
BibTex   https://doi.org/10.22226/2410-3535-2019-4-541-545

Abstract

Magnesium matrix composites can be produced by room temperature consolidation through high-pressure torsion. Good dispersion of phases, ultrafine grained matrix and improved properties are obtained.Magnesium and its alloys display interesting properties such as low density and biocompatibility but the lack of ductility and low strength compromise their performance in many applications. Fabrication of metal matrix composites may alleviate these challenges and improve overall performance. Magnesium matrix composites can be produced by cold consolidation of particles through high-pressure torsion and this paper summarizes recent findings in processing routes for the fabrication of composites, the microstructure developed, mechanical properties obtained and potential applications. It is shown that ductile materials can be mixed with magnesium by processing half samples placed side by side and hard and brittle materials can be incorporated by processing mixed particles. The distribution of phases may be controlled by the amount of rotation imposed during processing. Well-dispersed second phase particles within a continuous magnesium matrix can be obtained. Thus, it is possible to incorporate bioactive materials within a biodegradable magnesium matrix. Detailed characterization using transmission electron microscopy reveals the processing also refines the grain structure of the metallic matrix. The composites may display good ductility, improved strength and an ability to precipitate intermetallics through thermal treatment. The composites produced using high-pressure torsion have different potential applications including the development of bioactive and biodegradable biological implants.

References (32)

1. A. P. Zhilyaev, A. A. Gimazov, G. I. Raab, T. G. Langdon. Materials Science and Engineering: A. 486, 123 (2008). Crossref
2. I. V. Alexandrov, Y. T. Zhu, T. C. Lowe, R. K. Islamgaliev, R. Z. Valiev. Nanostructured Materials. 10, 45 (1998). Crossref
3. H. Asgharzadeh, H. Faraghi, H. S. Kim. Acta Metallurgica Sinica (English Letters). 30, 973 (2017). Crossref
4. M. Ashida, Z. Horita, T. Kita, A. Kato. Materials Transactions. 53, 13 (2012). Crossref
5. Z. Lee, F. Zhou, R. Z. Valiev, E. J. Lavernia, S. R. Nutt. Scripta Materialia. 51, 209 (2004). Crossref
6. J. M. Cubero-Sesin, Z. Horita. Materials Science and Engineering: A. 558, 462 (2012). Crossref
7. K. Edalati, M. Ashida, Z. Horita, T. Matsui, H. Kato. Wear. 310, 83 (2014). Crossref
8. J. Sort, D. C. Ile, A. P. Zhilyaev, A. Concustell, T. Czeppe, M. Stoica, S. Suriñach, J. Eckert, M. D. Baró. Scripta Materialia. 50, 1221 (2004). Crossref
9. H. Asgharzadeh, S.-H. Joo, J.-K. Lee, H. S. Kim. Journal of Materials Science. 50, 3164 (2015). Crossref
10. A. R. Yavari, W. J. Botta, C. A. D. Rodrigues, C. Cardoso, R. Z. Valiev. Scripta Materialia. 46, 711 (2002). Crossref
11. R. B. Figueiredo, T. G. Langdon. Advanced Engineering Materials. 21, 1801039 (2019). Crossref
12. D. Lopes, C. L. P. Silva, R. B. Soares, P. H. R. Pereira, A. C. Oliveira, R. B. Figueiredo, T. G. Langdon, V. F. C. Lins. Advanced Engineering Materials. 21, 1900391 (2019). Crossref
13. C. L. P. Silva, A. C. Oliveira, C. G. F. Costa, R. B. Figueiredo, M. de Fátima Leite, M. M. Pereira, V. F. C. Lins, T. G. Langdon. Journal of Materials Science. 52, 5992 (2017). Crossref
14. C. L. P. Silva, R. B. Soares, P. H. R. Pereira, R. B. Figueiredo, V. F. C. Lins, T. G. Langdon. Advanced Engineering Materials. 21, 1801081 (2019). Crossref
15. D. Ahmadkhaniha, Y. Huang, M. Jaskari, A. Järvenpää, M. H. Sohi, C. Zanella, L. P. Karjalainen, T. G. Langdon. Journal of Materials Science. 53, 16585 (2018). Crossref
16. C. Z. Zhang, S. K. Guan, L. G. Wang, S. J. Zhu, L. Chang. Journal of Materials Research. 32, 1061 (2017). Crossref
17. E. A. Lukyanova, N. S. Martynenko, V. N. Serebryany, A. N. Belyakov, L. L. Rokhlin, S. V. Dobatkin, Y. Z. Estrin. Russian Metallurgy (Metally). 2017, 912 (2017). Crossref
18. C. Zhang, S. Guan, L. Wang, S. Zhu, J. Wang, R. Guo. Advanced Engineering Materials. 19, 1600326 (2017). Crossref
19. C. Z. Zhang, S. J. Zhu, L. G. Wang, R. M. Guo, G. C. Yue, S. K. Guan. Materials & Design. 96, 54 (2016). Crossref
20. M. M. de Castro, A. P. Carvalho, P. H. R. Pereira, A. C. Isaac Neta, R. B. Figueiredo, T. G. Langdon. Materials Science Forum. 941, 851 (2019). Crossref
21. M. M. Castro, P. H. R. Pereira, A. Isaac, R. B. Figueiredo, T. G. Langdon. Journal of Alloys and Compounds. 780, 422 (2019). Crossref
22. M. M. Castro, D. R. Lopes, R. B. Soares, D. M. M. dos Santos, E. H. M. Nunes, V. F. C. Lins, P. H. R. Pereira, A. Isaac, T. G. Langdon, R. B. Figueiredo. Materials. 12, 2609 (2019). Crossref
23. J. K. Han, H. J. Lee, J. I. Jang, M. Kawasaki, T. G. Langdon. Materials Science and Engineering A. 684, 318 (2017). Crossref
24. M. Kawasaki, J. I. Jang. Materials. 10, 596 (2017). Crossref
25. M. Kawasaki, B. Ahn, H. Lee, A. P. Zhilyaev, T. G. Langdon. Journal of Materials Research. 31, 88 (2016). Crossref
26. M. M. Castro, S. Sabbaghianrad, P. H. R. Pereira, E. M. Mazzer, A. Isaac, T. G. Langdon, R. B. Figueiredo. Journal of Alloys and Compounds. 804, 421 (2019). Crossref
27. T. Grosdidier, J. J. Fundenberger, J. X. Zou, Y. C. Pan, X. Q. Zeng. International Journal of Hydrogen Energy. 40, 16985 (2015). Crossref
28. J. X. Zou, C. F. Pérez-Brokate, R. Arruffat, B. Bolle, J. J. Fundenberger, X. Q. Zeng, T. Grosdidier, W. J. Ding. Materials Science and Engineering: B. 183, 1 (2014). Crossref
29. R. B. Figueiredo, S. Sabbaghianrad, A. Giwa, J. R. Greer, T. G. Langdon. Acta Materialia. 122, 322 (2017). Crossref
30. R. B. Figueiredo, S. Sabbaghianrad, T. G. Langdon. IOP Conference Series: Materials Science and Engineering. 194, 012039 (2017). Crossref
31. H. Somekawa, T. Mukai. Metallurgical and Materials Transactions A. 46, 894 (2015). Crossref
32. Z. Zeng, J.-F. Nie, S.-W. Xu, C. H. J. Davies, N. Birbilis. Nature Communications. 8, 972 (2017). Crossref

Similar papers

Funding

1. Conselho Nacional de Desenvolvimento Científico e Tecnológico - 400407/2016-7
2. Fundação de Amparo à Pesquisa do Estado de Minas Gerais - APQ-00580-15
3. Serrapilheira Institute - Serra-1709-17750