Abstract
Bimodal microstructure is formed in high-Tc superconducting ceramics YBa2Cu3O7-x deformed by torsion under pressure at 1008oC. The appearance of second peak on grain length distribution is associated with formation of abnormally coarse grains with length L up to 300-500 μm. Cooling rate has almost no effect on the density of abnormal grains n and L, indicating that such grains are formed during deformation. The L value increases monotonically with increasing twist angle α, while n increases only up to α = 25 °, and then drops. The value of α above which n decreases sharply corresponds to the formation of strong texture with a factor F ≥ 0.95. Formation of abnormal grains can be explained by strain-enhanced grain growth during deformation. Intergranular sliding produces damage zones, the healing of which takes place due to the local migration of grain boundaries. Apparently, abnormal grains appear in places of most intense intergranular sliding. As the texture increases the degree of freedom of movement of grains decreases, so it decreases the possibility of accommodation of sliding of neighboring grains. This leads to increase in the number of damage zones and strain value in them that is accompanied by the growth of n and L. After it reaches a certain critical level of texture (F≈0.95 at α≥25o) the possibility of stress relaxation due to local migration of initial grains is exhausted, and dynamic recrystallization of abnormal grains begins. Therefore, when α≥ 25o the n value is decreased sharply.
References (11)
1. J. Ciulik, E. M. Taleff. Dynamic abnormal grain growth: A new method to produce single crystals // Scripta Materialia. 2009. Vol. 61. P. 895 - 898.
2. N. A. Pedrazas, T. E. Buchheit, E. A. Holm E. M. Taleff. Dynamic abnormal grain growth in tantalum // Materials Science & Engineering A 610 (2014) 76 - 84.
3. D. C. Larbalestier, S. E. Babcock, X. Y. Cai, M. B. Field, Y. Gao, N. F. Heing, D. L. Kaiser, K. Merkle, L. K. Williams, N. Zhang. Electrical transport across grain boundaries in bicrystals of YBa2Cu3O7-δ // Physica C. 1991. Vol. 185 - 189. P.315 - 320.
4. Juh-Lih Wang, X. Y. Cai, R. J. Kelley, M. D. Vaudin, S. E. Babcock, D. C. Larbalestier Electromagnetic coupling character of [001] twist boundaries in sintered Bi2Sr2CaCu2O8+x bicrystals // Physica C. 1994. Vol. 230. P.189 - 198.
5. V. Y. Gertsman. Coincidence site lattice misorientations of crystals in orthorhombic systems, with application to YBa2Cu3O7 // Scripta Metallurgica et Materialia. 1992. Vol. 27. P.291 - 296.
6. Имаев М. Ф., Кабирова Д. Б., Павлова В. В. Аномальный рост зерен в керамике Y123 при деформации // Открытая школа-конференция стран СНГ «УМЗНМ- 2014.», г. Уфа, с. 131.
7. Имаев М. Ф., Кабирова Д. Б. Формирование базисной текстуры при горячей деформации ВТСП керамики YBa2Cu3O7-x // Перспективные материалы. 2009. Вып.7. С. 124 - 129.
8. Imayev M. F., Kazakova D. B., Gavro A. N., Trukhan A. P. Grain growth in a YBa2Cu3Oх superconductive ceramics // Physica C. 2000. Vol. 329. P. 75 - 87.
9. Wilkinson D. S., Caceres C. H. On the mechanism of strain-enhanced grain growth during superplastic deformation //Acta Metallurgica. 1984. Vol. 32. No 9. P. 1335 - 1345.
10. V. V. Astanin, O. A. Kaibyshev, S. N. Faizova Cooperative grain boundary sliding under superplastic flow // Scripta Metallurgica et Materialia. 1991. Vol. 25. P. 2663 - 2668.
11. H. Muto, Y. Takahashi, T. Futami, M. Sakai Cooperative grain-boundary sliding in polycrystalline ceramics // Journal of the European Ceramic Society. 2002. Vol. 22. P. 2437 - 2442.