BEHAVIOUR OF SILICON PARTICLES IN AK21 ALUMINUM ALLOY (IN RUSSIA) AT SEVERE PLASTIC DEFORMATION AND ANNEALING

G.R. Khalikova, K.S. Shvets, V.G. Trifonov show affiliations and emails
Accepted  26 May 2015
This paper is written in Russian
Citation: G.R. Khalikova, K.S. Shvets, V.G. Trifonov. BEHAVIOUR OF SILICON PARTICLES IN AK21 ALUMINUM ALLOY (IN RUSSIA) AT SEVERE PLASTIC DEFORMATION AND ANNEALING. Lett. Mater., 2015, 5(2) 220-224
BibTex   https://doi.org/10.22226/2410-3535-2015-2-220-224

Abstract

The effect of severe plastic deformation (SPD) by high-pressure torsion on the structure of AK21 aluminum alloy (in Russia) was investigated. The initial state was liquid-forging billet. The samples of 8 mm diameter and 1.3 mm thick were deformed by torsion in Bridgman anvil at room temperature with 5 turns under a pressure of 6 GPa. Then the samples were annealed in the temperature range of 300...500°C for 5 minutes. The size and volume fraction of the silicon particles along the radius of the sample were estimated. It has been shown that severe plastic deformation resulted in refinement of eutectic silicon particles and primary silicon crystals due to their fragmentation. The intensive fragmentation of eutectic silicon occurred in the bulk of material, while the primary silicon crystals were most refinement only in the edge of the sample. In addition, severe plastic deformation resulted in a decrease of the volume fraction of the silicon particles due to the partial dissolution of the particles in aluminum matrix. The largest difference in the change of the volume fraction of silicon particles along the radius of the sample was observed in the edge (~2 times) due to the largest degree of deformation. Subsequent annealing of the alloy resulted in the decomposition of the supersaturated silicon solid solution and silicon particle separation. It was found that with increasing annealing temperature the volume fraction of the silicon particles increases and at 500°C has reached a level in the initial liquid-forging state. The most intensive decomposition of solid solution occurs in the edge of the sample. Furthermore, with increasing annealing temperature increased size of the precipitated silica particles from the solid solution.

References (21)

1. P. P. Jevtunov. Lite’nye splavy. M. Mashgiz. (1975) 431p. (in Russian) [П. П. Жевтунов. Литейные сплавы. М. Машгиз (1957) 431 с.].
2. A. G. Prigunova, N. A. Belov, Ju.N, Taran, V. S. Zolotorevski, V. I. Napalkov, S. S. Petrov. Siluminy. Atlas microstruktur i phractogramm promyshlennykh splavov. M. MISIS. (1996) 175 p. (in Russian) [А. Г. Пригунова, Н. А. Белов, Ю. Н. Таран, В. С. Золоторевский, В. И. Напалков, С. С. Петров. Силумины. Атлас микроструктур и фрактограмм промышленных сплавов. М. МИСИС. (1996) 175 с.].
3. V. G. Trifonov, S. S. Nechaev, A. R. Shaaykhmetov. Nonferrous metallurgy. Institutes of higher education reports. 3, 113-115 (1989). (in Russian) [В. Г. Трифонов, С. С. Нечаев, А. Р. Шаяхметов. Цветная металлургия. Известия ВУЗов. 3, 113-115 (1989).].
4. R. Z. Valiev, I. V. Aleksandrov. Nanostructurnye materialy poluchennye intensivno’ plastichesko’ deformacie’. M. Logos. (2000) 272 p. (in Russian) [Р. З. Валиев, И. В. Александров. Наноструктурные материалы, полученные интенсивной пластической деформацией. М. Логос. (2000) 272 с.].
5. A. P. Zhilyaev, T. G. Langdon. Progress in Materials Science. 53, 893-899 (2008).
6. J. M. Garcia-Infanta, A. P. Zhilyaev, F. Carreno, O. A. Ruano, J. Q. Su, S. K. Menon, T. R. McNelley. Materials Science. 45, 4613-4618 (2010).
7. Y. Kume, M. Kobashi, N. Kanetake. Materials Science Forum. 549-521, 1441-1447 (2006).
8. G. R. Khalikova, V. G. Trifonov. Letters on Materials. 1 (3), 138-142 (2011). (in Russian) [Г. Р. Халикова, В. Г. Трифонов. Письма о материалах. 1 (3), 138-142 (2011).].
9. G. R. Khalikova, V. G. Trifonov. Letters on Materials. 2 (3), 147-151 (2012). (in Russian) [Г. Р. Халикова, В. Г. Трифонов. Письма о материалах. 2 (3), 147-151 (2012).].
10. S. A. Saltikov. Stereometrical metallography. M. Metallurgiya. (1970) 376 p. (in Russian) [С. А. Салтыков. Стереометрическая металлография. М. Металлургия. (1970) 376 с.].
11. L. F. Mondolfo. Structura i svo’stva aluminievykh splavov. M. Metallurgija. (1979) 639 p. (in Russian) [Л. Ф. Мондольфо. Структура и свойства алюминиевых сплавов. М. Металлургия (1979) 639 с.].
12. N. N. Bu’nov, R. R. Zaharov. Raspad metallicheskikh peresyshchennykh rastvorov. M. Metallurgija (1964) 143 p. (in Russian) [Н. Н. Буйнов, Р. Р. Захаров. Распад металлических пересыщенных растворов. М. Металлургия (1964) 143 с.].
13. A. Kelly, R. Nikolson. Dispersnoe tverdenie. M.: Metallurgija (1966) 299 p. (in Russian) [А. Келли, Р. Никлсон. Дисперсионное твердение. М. Металлургия (1966) 299с.].
14. A. A. Mazilkin, B. B. Straumal, S. G. Protasova, O, A. Kogtenkova, R. Z. Valiev. Physics of the Solid State. 49 (6), 824-828 (2007). (in Russian) [А. А. Мазилкин, Б. Б. Страумал, С. Г. Протасова, О. А. Когтенкова, Р. З. Валиев. Физика твердого тела. 49 (6), 824-828 (2007).].
15. H. J. Roven, M. Liu, J. C. Werenskiold. Materials Science and Engineering A. 483-484, 54-59 (2008).
16. A. V. Korznikov, I. M. Safarov, D. V. Laptionok, R. Z. Valiev. Acta Metallurgica et Materialia. 39 (12), 3193-3196 (1991).
17. A. V. Korznikov, I. M. Safarov, D. V. Laptionok, B, Ph. Abdullin, R. Z. Valiev. Metals. 4, 131-136 (1993) (in Russian) [А. В. Корзников, И. М. Сафаров, В. Д. Лаптенок, Б. Ф. Абдуллин, Р. З. Валиев. Металлы. 4, 131-136 (1993).].
18. A. V. Korznikov, Ju. V. Ivanisenko, I. M. Safarov, R. Z. Valiev, M. M. Myshlyaev. Metals. 1, 91-96 (1994). (in Russian) [А. В. Корзников, Ю. В. Иванисенко, И. М. Сафаров, Р. З. Валиев, М. М. Мышляев, М. М. Камалов. Металлы. 1, 91-96 (1994).].
19. I. G. Brodova, I. G. Shirinkina, O. V. Antonova, A. V. Chirkova, S. V. Dobatkin, V. V. Zaharov. Deformation and Fracture of Materials. 4, 25-29 (2009). (in Russian) [И. Г. Бродова, И. Г. Ширинкина, О. В. Антонова, А. В. Чиркова, С. В. Добаткин, В. В. Захаров. Деформация и разрушение материалов. 4, 25-29 (2009).].
20. I. G. Brodova, D. V. Bashlikov, M. S. Nikitin, I. G. Shirinkina, T. I. Yablonskikh. The Physics of Metals and Metallography. 98 (1), 83-89 (2004) (in Russian) [И. Г. Бродова, Д. В. Башлыков, М. С. Никитин, И. Г. Ширинкина, Т. И. Яблонских. Физика металлов и металловедение. 98 (1), 83-89 (2004).].
21. S. V. Krimskiy, P. A. Nikulin, M. Yu. Murashkin, M. V. Markushev. Letters on Materials. 1 (3), 167-170 (2011). (in Russian) [С. В. Крымский, П. А. Никулин, М. Ю. Мурашкин, М. В. Маркушев. Письма о материалах. 1 (3), 167-170 (2011).].

Similar papers