Mechanical properties of Al-Nb in situ metal-matrix composites fabricated by constrained high pressure torsion at 10 GPa and subsequent annealing

K.S. Nazarov, G.F. Korznikova, R.K. Khisamov, R.R. Timiryaev, E.A. Korznikova, G.R. Khalikova ORCID logo , R.U. Shayakhmetov, S.N. Sergeyev, R.R. Kabirov, R.R. Mulyukov show affiliations and emails
Received 15 September 2022; Accepted 14 November 2022;
Citation: K.S. Nazarov, G.F. Korznikova, R.K. Khisamov, R.R. Timiryaev, E.A. Korznikova, G.R. Khalikova, R.U. Shayakhmetov, S.N. Sergeyev, R.R. Kabirov, R.R. Mulyukov. Mechanical properties of Al-Nb in situ metal-matrix composites fabricated by constrained high pressure torsion at 10 GPa and subsequent annealing. Lett. Mater., 2022, 12(4) 360-366
BibTex   https://doi.org/10.22226/2410-3535-2022-4-360-366

Abstract

Al-Nb composites demonstrate a considerable dependence of tensile strength on HPT straining which almost doubled upon the increase of torsional straining from 30 to 100 rotations of HPT anvil and reached 530 MPa. Annealing resulted in an increase in ductility up to ~12% with a slight decrease in tensile strength.Mechanical alloying of dissimilar metals by means of severe plastic deformation techniques is known to be a perspective method of obtaining in situ metal matrix composites with advanced properties. Recent investigations found out that besides severe mixing of elements, intensive formation of non-equilibrium intermetallic phases takes place. Presence of intermetallic particles in the composite affects both its physical and mechanical properties. In this work we have realized the fabrication of Al-Nb composites in one step by means of high-pressure torsion technique. A non-trivial phenomenon of growth of tensile strength with increasing number of revolutions during HPT was revealed. It was explained by more homogeneous mixing of components and precipitation of intermetallic phase in the vicinity of Al-Nb interphases. The microstructural observations and X-ray diffraction analysis allowed to reveal Al3Nb intermetallic phase in the as deformed composites, while the equilibrium temperature of formation of this phase is above 600°C. Varying the number of revolutions and post deformation annealing allows obtaining composites with different fractions of intermetallic particles. This approach can be considered as a way for the development of composites with a tailorable complex of physical and mechanical properties.

References (29)

1. N. R. Bandyopadhyay, S. Ghosh, A. Basumallick. Materials and Manufacturing Processes. 22, 679 (2007). Crossref
2. M. K. Surappa. Sadhana. 28, 319 (2003). Crossref
3. M. O. Bodunrin, K. K. Alaneme, L. H. Chown. J. Mater. Res. Techn. 4 (4), 434 (2015). Crossref
4. S. Mohapatra, A. K. Chaubey, D. K. Mishra, S. K. Singh. J. Mater. Res. Techn. 5, 117 (2016). Crossref
5. A. V. Aborkin, A. I. Elkin, V. V. Reshetniak, A. M. Ob`edkov, A. E. Sytschev, V. G. Leontiev, D. D. Titov, M. I. Alymov. Journal of Alloys and Compounds. 872, 159593 (2021). Crossref
6. R. Casati, M. Vedani. Metals. 4, 65 (2014). Crossref
7. R. Z. Valiev, R. K. Islamgaliev, I. V. Alexandrov. Prog. Mater. Sci. 45, 103 (2000).
8. K. Oh-ishi, K. Edalati, H. S. Kim, K. Hono, Z. Horita. Acta Materialia. 61, 3482 (2013). Crossref
9. M. Kawasaki, J.-K. Han, D.-H. Lee, J. Jang, T. G. Langdon. J. Mater. Res. 33, 2700 (2018). Crossref
10. M. Kawasaki, J. Jang. Materials. 10, 596 (2017). Crossref
11. J. K. Han, G. Y. Liang, M. Kawasaki, D. K. Han, J. I. Jang, T. G. Langdon. Adv. Eng. Mater. 20 (11), 1800642 (2018). Crossref
12. G. F. Korznikova, K. S. Nazarov, R. Kh. Khisamov, S. N. Sergeev, R. U. Shayachmetov, G. R. Khalikova, J. A. Baimova, A. M. Glezer, R. R. Mulyukov. Mater. Lett. 253, 412 (2019). Crossref
13. R. Kulagin, Y. Beygelzimer, Yu. Ivanisenko, A. Mazilkin, B. Straumal, H. Hahn. Mater. Lett. 222, 172 (2018). Crossref
14. X. Zhang, Y. Yu, B. Liu, Y. Zhao, J. Ren, Y. Yan, R. Cao, J. Chen. Journal of Alloys and Compounds. 783, 55 (2019). Crossref
15. G. Korznikova, E. Korznikova, G. Khalikova, K. Nazarov, R. Khisamov, S. Sergeev, R. Shayakhmetov, R. Mulyukov. Lett. Mater. 11 (4s), 533 (2021). Crossref
16. G. Korznikova, E. Korznikova, K. Nazarov, R. Shayakhmetov, R. Khisamov, G. Khalikova, S. Sergeev, R. Mulyukov. Adv. Eng. Mater. 23, 2000757 (2021). Crossref
17. K. Edalati, Sh. Toh, H. Iwaoka, Z. Horita. Acta Materialia. 60 (9), 3885 (2012). Crossref
18. Y. Sun, M. Aindow, R. J. Hebert, T. G. Langdon, E. J. Lavernia. J. Mater. Sci. 52, 12170 (2017). Crossref
19. K. Edalati, S. Toh, M. Watanabe, Z. Horita. Scr. Mater. 66, 386 (2012). Crossref
20. C. O. Ujah, A. P. I. Popoola, O. M. Popoola, V. S. Aigbodion. The International Journal of Advanced Manufacturing Technology. 101, 2275 (2019). Crossref
21. G. Korznikova, R. Kabirov, K. Nazarov, R. Khisamov, R. Shayakhmetov, E. Korznikova, G. Khalikova, R. Mulyukov. JOM. 72, 2898 (2020). Crossref
22. B. B. Straumal, A. R. Kilmametov, Y. Ivanisenko, L. Kurmanaeva, B. Baretzky, Y. O. Kucheev, P. Zięba, A. Korneva, D. A. Molodov. Mater. Lett. 118, 111 (2014). Crossref
23. C. Colinet, A. Pasturel, D. Nguyen Manh, D. G. Pettifor, P. Miodownik. Phys. Rev. B. 56, 552 (1997). Crossref
24. H. Mostaan, F. Karimzadeh, M. H. Abbasi. Thermochimica Acta. 529, 36 (2012). Crossref
25. S. R. Hosseini Zeidabadi, H. Daneshmanesh. Mater. Sci. Eng.: A. 702, 189 (2017). Crossref
26. G. R. Khalikova, G. F. Korznikova, K. S. Nazarov, R. Kh. Khisamov, S. N. Sergeev, R. U. Shayakhmetov, E. A. Korznikova, R. R. Mulyukov. Inorganic Materials: Applied Research. 11 (5), 1409 (2021). Crossref
27. R. Pretorius, A. M. Vredenberg, F. W. Saris. Journal of Applied Physics. 70, 3636 (1991). Crossref
28. R. R. Timiryaev, K. S. Nazarov, G. F. Korznikova, R. R. Kabirov, G. R. Khalikova, R. K. Khisamov, R. U. Shayakhmetov, R. R. Mulyukov. Materials. Technologies. Design. 3 (2), 5 (2021). (in Russian) [Р. Р. Тимиряев, К. С. Назаров, Г. Ф. Корзникова, Р. Р. Кабиров, Г. Р. Халикова, Р. Х. Хисамов, Р. У. Шаяхметов, Р. Р. Мулюков. Materials. Technologies. Design. 3 (2), 5 (2021).]. Crossref
29. B. B. Straumal, A. R. Kilmametov, B. Baretzky, O. A. Kogtenkova, P. B. Straumal, L. Litynska-Dobrzynska, R. Chulist, A. Korneva, P. Zieba. Acta Materialia. 195, 184 (2020). Crossref

Similar papers

Funding

1. Institute for Metals Superplasticity Problems, Russian Academy of Sciences - state assignment
2. Russian Science Foundation - Grant No. 18-12-00440-П
3. Center for Shared Access “Structural and Physicomechanical Investigations of Materials” at the IMSPRAS -
4. Ministry of Education and Science of Russia for the Federal State Budgetary Educational Institution of Higher Education "USATU" - No. 075-03-2021-014/4