Effect of severe plastic deformation on martensitic transformations in a metastable austenitic steel

G.V. Klevtsov, R.Z. Valiev, N.A. Klevtsova, N.A. Enikeev ORCID logo , I.N. Pigaleva, M.M. Abramova ORCID logo , O.A. Frolova show affiliations and emails
Received: 15 August 2023; Revised: 16 October 2023; Accepted: 16 October 2023
Citation: G.V. Klevtsov, R.Z. Valiev, N.A. Klevtsova, N.A. Enikeev, I.N. Pigaleva, M.M. Abramova, O.A. Frolova. Effect of severe plastic deformation on martensitic transformations in a metastable austenitic steel. Lett. Mater., 2023, 13(4s) 397-402
BibTex   https://doi.org/10.22226/2410-3535-2023-4-397-402

Abstract

The distribution of microhardness (HV 0.5) and the average amount of γ-, α- and ε-martensite in a sample made of steel Fe-0.02C-18Cr-8Ni after SPDT (a) and the distribution of α-martensite under the ductile static fracture surface of steel after ECAP (b, c)We study the effect of high-pressure torsion (HPT) and equal-channel angular pressing (ECAP) on martensitic transformations in the metastable austenitic steel Fe-0.02C-18Cr-8Ni, as well as the regularities of martensitic transformations in plastic zones under the surface of static fractures in the coarse-grained (CG) and ultrafine-grained (UFG) steel. The volume content of martensitic phases was determined by the X-ray method. It has been established that, as a result of HPT, the steel experiences martensitic transformations according to the γ → ε → α mechanism, and during the static fracture of steel both in the initial state and after ECAP — to the γ → α mechanism. The amount of α-martensite in plastic zones under the surface of static fractures decreases from the surface to the depth of the samples, and the depth to which α-martensite extends coincides with the depth of plastic zones under the fracture surfaces.

References (29)

1. V. V. Sagaradze, A. I. Uvarov. Strengthening and Properties of Austenitic Steels. Yekaterinburg, RIO Ural Branch of the Russian Academy of Sciences (2013) 720 p. (in Russian) [В. В. Сагарадзе, А. И. Уваров. Упрочнение и свойства аустенитных сталей. Екатеринбург, РИО УрО РАН (2013) 720 с.].
2. G. V. Klevtsov, R. Z. Valiev, N. A. Klevtsova, M. N. Tyurkov, M. L. Linderov, M. M. Abramova, A. G. Raab, T. B. Minasov. Materials. 14 (24), 7739 (2021). Crossref
3. S. A. Vologzhanina, A. F. Igolkin, A. P. Petkova. St. Petersburg Polytechnic University Journal of Enginerring Science and Technology. 4 (25), 83 (2019). (in Russian) [С. А. Вологжанина, А. Ф. Иголкин, А. П. Петкова. Научно-технические ведомости СПбПУ. Естественные и инженерные науки. 4 (25), 83 (2019).]. Crossref
4. N. S. Surikova, I. V. Vlasov, N. A. Narkevich, A. I. Gordienko, P. V. Kuznetsov. Fiz. Met. Metalloved. 3 (121), 314 (2020). (in Russian) [Н. С. Сурикова, И. В. Власов, Н. А. Наркевич, А. И. Гордиенко, П. В. Кузнецов. Физика металлов и металловедение. 3 (121), 314 (2020).]. Crossref
5. G. V. Klevtsov, R. Z. Valiev, M. V. Fesenyuk, N. A. Klevtsova, M. N. Tyur’kov, M. M. Abramova, G. I. Raab. Steel in Translation. 11 (51), 778 (2021).
6. N. A. Klevtsova, O. A. Frolova, G. V. Klevtsov. Fracture of Austenitic Steels and Martensitic Transformations in Plastic Zones. Moscow, AE (2005) 155 p. (in Russian) [Н. А. Клевцова, О. А. Фролова, Г. В. Клевцов. Разрушение аустенитных сталей и мартенситные превращения в пластических зонах. Москва, АЕ (2005) 155 с.].
7. A. А. Peregudov, S. A. Vologzhanina, A. F. Igolkin. Key Engineering Materials. 887, 242 (2021). Crossref
8. M. V. Odnobokova, A. N. Belyakov, N. A. Enikeev, R. O. Kaibyshev. Phys. Met. Metallogr. 122, 775 (2021). Crossref
9. L. G. Korshunov, N. L. Chernenko. Diagnostics, Resource and Mechanics of Materials and Structures. 5, 48 (2019). (in Russian) [Л. Г. Коршунов, Н. Л. Черненко. Diagnostics, Resource and Mechanics of Materials and Structures. 5, 48 (2019).]. Crossref
10. M. Odnobokova, A. Belyakov, R. Kaibyshev. Philosophical Magazine. 5 (99), 531 (2019). Crossref
11. R. Z. Valiev, N. A. Klevtsova, G. V. Klevtsov, M. V. Fesenuk, M. R. Kashapov, M. M. Abramova. Deformation and Fracture of Materials. 10, 14 (2010). (in Russian) [Р. З. Валиев, Н. А. Клевцова, Г. В. Клевцов, М. В. Фесенюк, М. Р. Кашапов, М. М. Абрамова. Деформация и разрушение материалов. 10, 14 (2010).].
12. K. Hajizadeh, K. J. Kurzydlowski. Physics of Metals and Metallography. 9 (122), 931 (2021).
13. D. Broek. Fundamentals of Fracture Mechanics. Moscow, Higher School (1980) 368 p. (in Russian) [Д. Броек. Основы механики разрушения. Москва, Высшая школа (1980) 368 с.].
14. V. Z. Parton, E. M. Morozov. Mechanics of Elastoplastic Fracture. Moscow, Nauka (1985) 504 p. (in Russian) [В. З. Партон, Е. М. Морозов. Механика упругопластического разрушения. Москва. Наука (1985) 504 с.].
15. L. R. Botvina. Fundamentals of Fractodiagnostics. Moscow, Technosphere (2022) 394 p. (in Russian) [Л. Р. Ботвина. Основы фрактодиагностики. Москва, Техносфера (2022) 394 с.].
16. S. V. Dobatkin, O. V. Rybalchenko, N. A. Enikeev, A. A. Tokar, M. M. Abramova. Mater. Lett. 166, 276 (2016). Crossref
17. S. V. Dobatkin, O. V. Rybal’chenko, G. I. Raab. Mater. Sci. Eng. A. 463, 41 (2007). Crossref
18. I. I. Kositsyna, V. V. Sagaradze. Bull. Russ. Acad. Sci. Phys. 71, 285 (2007). Crossref
19. I. Yu. Litovchenko, A. N. Tyumentsev, S. A. Akkuzin, E. P. Naiden, A. V. Korznikov. Phys. Met. Metallogr. 117, 847 (2016). Crossref
20. I. Yu. Litovchenko, A. N. Tyumentsev, M. I. Zahozheva, A. V. Korznikov. Rev. Adv. Mater. Sci. 31, 47 (2012).
21. A. Heidarzadeh, M. Neikter, N. Enikeev, L. Cui, F. Forouzan, R. T. Mousavian. Mater. Sci. Eng. A. 811, 141086 (2021). Crossref
22. R. Z. Valiev, A. P. Zhilyaev, T. G. Langdon. Bulk Nanostructured Materials: Fundamentals and Applications. John Wiley & Sons, Hoboken, NJ, USA (2014) 440 р. Crossref
23. GOST 25.506-85. Design, Calculation and Strength Testing. Methods of Mechanical Testing of Metals. Determination of Fracture Toughness Characteristics under the Static Loading. Moscow, Standards Publishing House (1985) 62 p. (in Russian) [ГОСТ 25.506-85. Расчеты и испытания на прочность. Методы механических испытаний металлов. Определение характеристик трещиностойкости (вязкости разрушения) при статическом нагружении. Москва, Издательство стандартов (1985) 62 с.].
24. M. V. Karavaeva, M. M. Abramova, N. A. Enikeev, G. I. Raab, R. Z. Valiev. Metals. 6, 310 (2016). Crossref
25. V. K. Shamardin, M. M. Abramova, T. M. Bulanova, A. A. Karsakov, A. E. Fedoseev, A. V. Obukhov, R. Z. Valiev, I. V. Alexandrov, G. I. Raab, N. A. Enikeev. Mater. Sci. Eng. A. 712, 365 (2018). Crossref
26. G. V. Klevtsov, R. Z. Valiev, N. A. Klevtsova, I. P. Semenova, I. N. Pigaleva, M. L. Linderov. Letters on Materials. 10 (1), 16 (2020). (in Russian) [Г.В. Клевцов, Р.З. Валиев, Н.А. Клевцова, И.П. Семенова, И.Н. Пигалева, М.Л. Линдеров. Письма о материалах. 10 (1), 16 (2020).]. Crossref
27. G. V. Klevtsov, L. R. Botvina, N. A. Klevtsova, L. V. Limar. Fractodiagnosis of the Fracture of Metallic Materials and Structures. Moscow, MISiS (2007) 264 p. (in Russian) [Г. В. Клевцов, Л. Р. Ботвина, Н. А. Клевцова, Л. В. Лимарь. Фрактодиагностика разрушения металлических материалов и конструкций. Москва, МИСиС (2007) 264 с.].
28. N. V. Ageev, A. A. Babareko, S. Ya. Betzofen. Proceedings of the Academy of Sciences of the USSR. Metals. 1, 94 (1974). (in Russian) [Н. В. Агеев, А. А. Бабарэко, С. Я. Бецофен. Изв. АН СССР. Металлы. 1, 94 (1974).].
29. L. I. Mirkin. Handbook of X-ray Diffraction Analysis of Polycrystals. Moscow, State Publisher of Phys.-Math. Literature (1961) 863 p. (in Russian) [Л. И. Миркин. Справочник по рентгеноструктурному анализу поликристаллов. Москва, Гос. изд. физ.-мат. литературы (1961) 863 с.].

Similar papers

Funding

1. Russian Science Foundation - Interdisciplinary projects no. 20-69-47059
2. Russian Science Foundation - partially no. 20-63-47027