Photon treatment effect on the hardness and surface adhesion of thermoelectric legs based on Bi2Te3‑Bi2Se3 and Bi2Te3‑Sb2Te3 systems

E.K. Belonogov, V.A. Dybov ORCID logo , A.V. Kostyuchenko, S.B. Kushev ORCID logo , D.V. Serikov ORCID logo , S.A. Soldatenko, M.P. Sumets show affiliations and emails
Received 09 November 2019; Accepted 01 March 2020;
Citation: E.K. Belonogov, V.A. Dybov, A.V. Kostyuchenko, S.B. Kushev, D.V. Serikov, S.A. Soldatenko, M.P. Sumets. Photon treatment effect on the hardness and surface adhesion of thermoelectric legs based on Bi2Te3‑Bi2Se3 and Bi2Te3‑Sb2Te3 systems. Lett. Mater., 2020, 10(2) 189-194


In the present work, the efficiency of pulsed photon processing in increasing the hardness and adhesive strength of the surface of hot-pressed semiconductor thermoelectric branches based on the Bi2Te3-Bi2Se3 (n-type) and Bi2Te3-Sb2Te3 (p-type) solid solutions. This is achieved by stimulating local recrystallization of the defective layer near the surface of semiconductor branches at a depth of 100-200 nm.In this work, the composition, morphology and mechanical properties of the surface of semiconductor thermoelectric legs before and after the pulsed photon treatment were studied. The n-type (Bi2Te3‑Bi2Se3) and the p-type (Bi2Te3‑Sb2Te3) legs fabricated by a hot pressing method were treated using a special technique, including mechanical polishing, pulsed photon irradiation with xenon lamps and electrochemical etching. The pulsed photon treatment significantly enhanced mechanical properties and adhesion hardness of the thermoelectric legs. The mechanical polishing followed by the pulsed photon treatment increased the adhesion of the barrier and commutation Mo / Ni layers three- and twofold for the n-type and p-type legs, respectively. The pulsed photon treatment stimulated local recrystallization of the surface defect layer up to 100 – 200 nm in-depth under an effective temperature of about 800 K in the near-surface layer of branches. Besides, the pulsed photon treatment increased the surface hardness of the Bi2Te3‑Bi2Se3 system by 1.2 times. The surface modification of thermoelectric legs through the pulsed photon treatment did not decline the barrier properties of the Mo-layer in Ni-Mo-Bi2Te3 + Bi2Se3 heterostructures.

References (14)

1. X. Zhu, L. Cao, W. Zhu, Y. Deng. Adv. Mater. Interfaces. 5 (23), 1801279 (2018). Crossref
2. Y. I. Shtern, R. E. Mironov, M. Y. Shtern, A. A. Sherchenkov, M. S. Rogachev. Acta Phys. Polon. A. 129 (4), 785 (2016). Crossref
3. W. Xie, X. Tang, Y. Yan, Q. Zhang, T. M. Tritt. Appl. Phys. Lett. 94, 102111 (2009). Crossref
4. W. Brostow, T. Datashvili, H. E. Hagg Lobland, T. Hilbig, L. Su, C. Vinado, J. White. J. Mater. Res. 27, 2930 (2012). Crossref
5. M. Y. Shtern, Y. I. Shtern, A. A. Sherchenkov. Russ. Microelectron. 41 (7), 393 (2012). Crossref
6. N. Y. C. Yang, A. M. Morales. Metallurgy, Thermal Stability, and Failure Mode of the Commercial Bi-Te-Based Thermoelectric Modules. Albuquerque, NM, and Livermore, CA (2009). Crossref
7. G. C. Dannangoda, C. Key, M. Sumets, K. S. Martirosyan. J. Electron. Mater. 47, 5800 (2018). Crossref
8. H.-P. Feng, B. Yu, S. Chen, K. Collins, C. He, Z. F. Ren, G. Chen. Electrochim. Acta. 56, 3079 (2011). Crossref
9. A. I. Voronin, V. T. Bublik, N. Y. Tabachkova, Y. M. Belov, J. Electron. Mater. 40, 794 (2011). Crossref
10. I. S. Virt, T. P. Shkumbatyuk, I. V. Kurilo, I. O. Rudyi, T. Y. Lopatinskyi, L. F. Linnik, V. V. Tetyorkin, A. G. Phedorov. Semiconductors. 44, 544 (2010). Crossref
11. V. M. Ievlev. Russ. Chem. Rev. 82, 815 (2013). Crossref
12. E. Belonogov, V. Dybov, A. Kostyuchenko, S. Kushev, D. Serikov, S. Soldatenko. J. Surf. Investig. X-Ray, Synchrotron Neutron Tech. 13, 371 (2019). Crossref
13. ICDD PDF-2, Release, No.01-072-1836 (2004).
14. P. R. S. H. Okamoto. Binary Alloy Phase Diagrams, 2nd ed. ASM International, Materials Park, Ohio, USA (1990) 1129 p.

Similar papers


1. Ministry of Education and Science of the Russian Federation - No. 03. G25.31.0246