Microstructure of ultrafine-grained Ti-40 wt.% Nb alloy after annealing

A.Y. Eroshenko, Y.P. Sharkeev, M.A. Khimich ORCID logo , I.A. Glukhov, P.V. Uvarkin, A.I. Tolmachev, A.M. Mairambekova show affiliations and emails
Received 12 July 2019; Accepted 23 October 2019;
This paper is written in Russian
Citation: A.Y. Eroshenko, Y.P. Sharkeev, M.A. Khimich, I.A. Glukhov, P.V. Uvarkin, A.I. Tolmachev, A.M. Mairambekova. Microstructure of ultrafine-grained Ti-40 wt.% Nb alloy after annealing. Lett. Mater., 2020, 10(1) 54-59
BibTex   https://doi.org/10.22226/2410-3535-2020-1-54-59

Abstract

Ti-40wt.% Nb alloy in UFG state (structural elements’ average size is 0.28 μm) has multiphase structure, which is represented by β-subgrains, dispersive-strengthened with nanoparticles of nanosized ω-phase, and α-subgrains. Annealing temperature range of 773-973 K is characterized by transformation of alloy’s structure from ultrafingerained state into finegrained, active growth of dispersive-strengthened β-phase’s grains size and significant decrease of microhardness. Transformation occurs according to the α→β scheme.The results of studies on the evolution of the microstructure and phase composition of ultrafine-grained Ti-40 wt.% Nb alloy during annealing in the temperature range of 673 –1073 K are presented. The ultrafine-grained structure in the Ti-40 wt.% Nb alloy was formed by a combined severe plastic deformation (SPD) method, which includes three-cycled abc-forging with a sequential temperature decrement in the range of 773 – 673 K, multi-pass rolling in grooved rollers at room temperature, and subsequent recrystallization annealing at 573 K. After SPD, the Ti-40 wt.% Nb alloy had a microstructure represented by the β-phase subgrains with ellipsoidal particles of the ω-phase localized in the bulk of the β-grains, and the α-phase subgrains. The average size of structural elements (grains, subgrains and fragments) was 0.28 μm. After annealing in the range of 673 – 873 K, the microstructure consisted of the dispersion-strengthened ω-phase, β-subgrains and α-subgrains, similarly to the initial UFG state. At the same time, a redistribution of the volume fraction of the α-phase occurred. In the range of 773 – 973 K, the transformation of the ultrafine-grained (β + α + ω)-structure into a fine-grained structure consisting of β- and ω-phases with phase transformation according to the α → β scheme was observed. At temperatures above 973 K, active recrystallization occurred, which was accompanied by the rapid growth of a dispersive-strengthened β-phase grain size. This was also accompanied by the transformation of the alloy into a сoarse-grained state and a significant decrease of microhardness. Change in the concentration of niobium in the range of 40 – 45 wt.% for the titanium-niobium alloy in the ultrafine-grained state does not have a significant effect on the structural-phase transformations during annealing.

References (18)

1. M. Niinomi, Y. Liu, M. Nakai, H. Liu, H. Li. Regenerative Biomaterials. 3 (3), 173 (2016). Crossref
2. Q. Chen, G. A. Thouas. Materials Science and Engineering: R: Reports. 87, 1 (2015). Crossref
3. X. Liu, S. Chen, J. K. H. Tsoi, J. Pekka. Matinlinna Regenerative Biomaterials. 4 (5), 315 (2017). Crossref
4. H. M. Ozaki. Mater. Transac. Tomomichi. 45 (8), 2776 (2004). Crossref
5. A. Helth, S. Pilz, T. Kirsten, L. Giebeler, J. Freudenberger, M. Calin, J. Eckert, A. Gebert. J. Mech. Behavi. Biomed. Mater. 65, 137 (2017). Crossref
6. A. Reck, S. Pilz, U. Thormann, V. Alt, A. Gebert, M. Calin, C. Hei, M. Zimmermann. MATEC Web of Conferences. 165, 06001 (2018). Crossref
7. A. Panigrahi, B. Sulkowski, T. Waitz. J. Mechan. Behav. Biomed. Mater. 62, 93 (2016). Crossref
8. R. Z. Valiev, A. P. Zhilyaev, T. G. Langdon. Bulk Nanostructured Materials: Fundamentals and Applications. John Wiley & Sons, New Jersey (2014) 456 p. Crossref
9. V. Brailovski, S. D. Prokoshkin, K. Inaekyan, S. Dubinsky, Y. Zhukova, V. Sheremetyev, A. Konopatsky. Mater. Sci. Found. 81 - 82, 342 (2015). Crossref
10. Yu. P. Sharkeev, A. Yu. Eroshenko, I. A. Glukhov, Q. Zhu, A. I. Tolmachev. AIP Conf. Proc. 1683, 567 (2014). Crossref
11. A. Yu. Eroshenko, A. M. Mairambekova, Yu. P. Sharkeev, Zh. G. Kovalevskaya, M. A. Khimich, P. V. Uvarkin. Letters on materials. 7 (4), 469 (2017). Crossref
12. K. Ozaltin, W. Chrominski, M. Kulczyk, A. Panigrahi, J. Horky, M. Zehetbauer, M. Lewandowska. J. Mater. Sci. 49, 6930 (2014). Crossref
13. M. Bönisch, A. Panigrahi, M. Calin, T. Waitz, M. Zehetbauer, W. Skrotzki, J. Eckert. J. Alloys and Compounds. 697, 300 (2017). Crossref
14. A. Yu. Eroshenko, Yu. P. Sharkeev, I. A. Glukhov, P. V. Uvarkin, A. M. Mairambekova, A. I. Tolmachev. Russian Physics Journal. 61 (10), 1899 (2019). Crossref
15. M. Ladd, R. Palmer. In: Structure Determination by X-ray Crystallography. Analysis by X-rays and Neutrons. Springer, New York (2013) 784 pp. Crossref
16. ASTM E1382-97 (2010). Standard Test Methods for Determining Average Grain Size Using Semiautomatic and Automatic Image Analysis.
17. E. V. Kozlov, A. M. Gleser, N. A. Koneva, N. A. Popova, I. A. Kurzina. Osnovy plasticheskoy deformatsii nanostrukturnykh materialov. Moscow, PHYSMATHLIT (2016) 304 p. (in Russian) [Э. В. Козлов, А. М. Глезер, Н. А. Конева, Н. А. Попова, И. А. Курзина. Основы пластической деформации наноструктурных материалов. Москва, ФИЗМАТЛИТ (2016) 304 с.].
18. E. W. Colings. Physical Metallurgy of Titanium Alloys. Metals Park, OH: American Society for Metals. Physical Description (1984) 261 p.

Similar papers

Funding

1. Program of fundamental research of the state academies of Sciences for 2017-2020 - III.23.2