Regularities in superplasticity of titanium alloys depending on their initial structure and phase composition

I.V. Ratochka, E.V. Naydenkin, I.P. Mishin, O.N. Lykova show affiliations and emails
Received 16 September 2018; Accepted 08 October 2018;
Citation: I.V. Ratochka, E.V. Naydenkin, I.P. Mishin, O.N. Lykova. Regularities in superplasticity of titanium alloys depending on their initial structure and phase composition. Lett. Mater., 2018, 8(4s) 543-548
BibTex   https://doi.org/10.22226/2410-3535-2018-4-543-548

Abstract

Superplastic properties of titanium alloys with coarse-grained (CG) and ultrafine-frained (UFG) structureThe effect of the initial structure and phase composition on superplastic properties of pseudo α (Ti-4Al-2V), α + β (Ti-6Al-4V) and near β (Ti-5Al-5Mo-5V-1Cr-1Fe) titanium alloys was studied in temperature range 773-1223 K. It was shown that in the coarse-grained Ti-4Al-2V alloy the superplasticity is not realized in the investigated temperature range. It is assumed that this is due to the low concentration of the β stabilizing elements and difficult development of phase transformations that promote the conversion of lamellar structure into a globular one. In the case of two other alloys with a coarse-grained structure a decrease in the yield stress and an increase in elongation to failure above 150% are observed at temperatures above 1073 K. All the alloys with a fine-grained structure show superplastic flow with elongations to failure above 300 % regardless of phase composition. The formation of an ultrafine-grained structure in the alloys leads to a decrease in the temperature of the beginning of the superplastic flow realization up to 823 K independently of phase composition as compared with coarse-grained and fine-grained alloys. The β phase volume fraction and the nature of its precipitation have a significant effect on the features of development of superplastic flow and the maximum values of relative elongation to failure. This effect is apparently due to the stabilization of ultrafine-grained state by the precipitations of the β-phase along grain boundaries (Ti-6Al-4V alloy) or the formation of a micro-duplex two-phase structure (near β alloy).

References (22)

1. M. Peters, C. Leyens. Titanium and Titanium Alloys: Fundamentals and Applications. Wiley-VCH, Weinkeim, Germany (2003) 513 p.
2. V. N. Moiseyev. Titanium Alloys. Russian Aircraft and Aerospace Applications. CRC Press, New York (2005) 216 p.
3. A. A. Ilyin, B. A. Kolachev, I. S. Polkin. Titanium Alloys. Composition, Structure, Properties. Reference Book. Moscow, VILS-MATI (2009) 520p. (In Russian) [А. А. Ильин, Б. А. Колачев, И. С. Полькин. Титановые сплавы. Состав, Структура, Свойства. Москва, ВИЛС-МАТИ (2009) 520 с.].
4. O. A. Kaibyshev. Sverkhplastichnost’ Promyshlennykh Splavov (Superplasticity of Commercial Alloys). Moscow, Metallurgia (1984) 264 p. (in Russian) [О. А. Кайбышев. Сверхпластичность промышленных сплавов. Москва, Металлургия (1984) 264 с.].
5. T. G. Nieh, J. Wadsworth, O. D. Sherby. Superplasticity in Metals and Ceramics. Cambridge University Press, Cambridge (1997) 287p.
6. S. S. Bkhattacharya, O. I. Bylya, R. A. Vasin, K. A. Padmanabhan. Mechanics of Solids. 44 - 6, 951 (2009). Crossref
7. O. A. Kaibyshev, R. Z. Valiev. Grain boundaries and metal properties. Moscow, Metallurgia (1987) 214p. (in Russian) [О. А. Кайбышев, Р. З. Валиев. Границы зерен и свойства металлов. Москва, Металлургия (1987) 214 с.].
8. Yu. R. Kolobov, R. Z. Valiev, G. P. Grabovetskaya, A. P. Zhilyaev, E. F. Dudarev, K. V. Ivanov, M. B. Ivanov, O. A. Kashin, E. V. Naydenkin. Grain boundary diffusion and properties of nanostructured materials. Cambridge Int Sci Publ. (2007) 236p.
9. E. V. Naydenkin, I. V. Ratochka, I. P. Mishin, O. N. Lykova, N. V. Varlamova. Journal of Materials Science. 52 - 8, 4164 (2017). Crossref
10. M. A. Meyers, A. Mishra, D. J. Benson. Prog Mater Sci. 51, 427 (2006). Crossref
11. R. Z. Valiev, A. P. Zhilyaev, T. G. Langdon. Bulk nanostructured materials: fundamentals and applications. Wiley, New Jersey (2013) 456 p.
12. H. Matsumoto, K. Yoshida, S-H. Lee, Y. Ono, A. Chiba. Mater Let. 98, 209 (2013). Crossref
13. T. Seshacharyulu, S. C. Medeiros, W. G. Frazier, Y.V.R.K. Prasad. Mater Sci Eng A. 284, 184 (2000). Crossref
14. E. Alabort, P. Kontis, D. Barba, K. Dragnevski, R. C. Reed. Acta Mat. 105, 449 (2016). Crossref
15. I. Ratochka, O. Lykova, I. Mishin, E. Naydenkin. Mater Sci Eng A. 731, 577 (2018). Crossref
16. M. Ashida, P. Chen, H Doi, Y. Tsutsumi, T. Hanawa, Z. Horita. Mater Sci Eng A. 640, 449 (2015). Crossref
17. Patent RF No.2388566, 22.07.2008. (in Russian) [Патент РФ No.2388566, 22.07.2008.].
18. E. V. Naydenkin, I. V. Ratochka, I. P. Mishin, O. N. Lykova, N. V. Varlamova. Russian Physics Journal. 59, 397 (2016).
19. M. Meier, D. Lesuer, A. Mukherjee. Mater. Sci. Eng. A. 154, 165 (1992). Crossref
20. O. A. Kaibyshev, S. N. Faizova, A. F. Hairullina. Acta Mat. 48, 2093 (2000). Crossref
21. Yu. R. Kolobov, I. V. Ratochka. Mater Sci Eng A. 410 - 411, 468 (2005). Crossref
22. E. F. Dudarev, G. P. Pochivalova, Yu. R. Kolobov, E. V. Naydenkin, O. A. Kashin. Mater Sci Eng A. 503, 58 (2009). Crossref

Cited by (5)

1.
E. Klassman, V. Astanin. Lett. Mater. 10(1), 10 (2020). Crossref
2.
E. V. Naydenkin, I. V. Ratochka, O. N. Lykova, I. P. Mishin. J Mater Sci. 55(22), 9237 (2020). Crossref
3.
I. V. Ratochka, I. P. Mishin, O. N. Lykova, E. V. Naidenkin. Russ Phys J. 63(4), 680 (2020). Crossref
4.
I. V. Ratochka, E. V. Naydenkin, O. N. Lykova, I. P. Mishin. Russ Phys J. 64(12), 2193 (2022). Crossref
5.
I.V. Ratochka, I.P. Mishin, O.N. Lykova, E.V. Naydenkin. Materials Science and Engineering: A. 803, 140511 (2021). Crossref

Similar papers