Failure mechanisms of titanium VT1-0 and zirconium alloy E110 in ultrafine-grained, fine-grained and coarse-grained states under cyclic loading in gigacycle regime

O.B. Naimark, Y.P. Sharkeev, A.M. Mairambekova, M.V. Bannikov, A.Y. Eroshenko, A.I. Vedernikova show affiliations and emails
Received 25 June 2018; Accepted 06 August 2018;
This paper is written in Russian
Citation: O.B. Naimark, Y.P. Sharkeev, A.M. Mairambekova, M.V. Bannikov, A.Y. Eroshenko, A.I. Vedernikova. Failure mechanisms of titanium VT1-0 and zirconium alloy E110 in ultrafine-grained, fine-grained and coarse-grained states under cyclic loading in gigacycle regime. Lett. Mater., 2018, 8(3) 317-322
BibTex   https://doi.org/10.22226/2410-3535-2018-3-317-322

Abstract

During the cyclic deformation the energy dissipation zone covers a significant amount of the titanium sample and the zirconium alloy one in the ultrafine-grained state. For the coarse-grained and fine-grained states the growth of thermal energy has a localized character in the active zone of the samples. Cyclic loading of the titanium sample and the zirconium alloy in the ultrafine-grained state is accompanied by a qualitative change in the energy absorption dissipation process.Fatigue tests were carried out for the samples of titanium VT1-0 and the Zr-1 wt. % Nb zirconium alloy in ultrafine-grained, fine-grained and coarse-grained states in the gigacycle fatigue regime. It was found that the formation of the ultra-fine grained structure in titanium and zirconium alloys leads to an increase in the fatigue limit of titanium by 1.3 times and the zirconium alloy by 1.7 times in the gigacyclic region (10*9 cycles) when compared to the fine-grained and coarse-grained states. The evolution of the temperature field for the titanium and zirconium alloy samples in various structural states in the process of cyclic loading was studied by the method of infrared thermography. It was shown that the process of cyclic deformation for all types of structural states is accompanied by the onset and expansion of the heat release center in the local volume of samples and has a significant impact on the fatigue strength. The maximum temperature increment on the surface of ultrafine-grained samples of titanium VT1-0 and zirconium alloy Zr-1 wt. % Nb is significantly lower than that for the fine-grained and coarse-grained state. This fact indicates a qualitative change in the energy of the mechanism absorption dissipation which is associated with the ultra-fine-grained state features When comparing with the dynamics of changes in thermal fields for the titanium and zirconium alloy samples in coarse-grained, fine-grained and ultrafine-grained states. It was found that the energy dissipation zone covers a significant amount of the sample in the process of fatigue tests for the case of ultrafine-grained state, whereas in the case of coarse-grained and fine-grained state, the growth of thermal energy has a localized character in the active zone area of the sample.

References (15)

1. L. D. Zardiackas, M. J. Kraay, H. L. Freese. Titanium, niobium, zirconium and tantalum for medical and surgical applications. ASTM International (2006) 265 p.
2. D. L. Douglass. The metallurgy of Zirconium. International Atomic Energy Agency, Vienna (1971) 160 p.
3. R. Z. Valiev, A. P. Zhilyaev, T. G. Langdon. Bulk nanostructured materials: fundamentals and applications. New Jersey, John Wiley & Sons (2014) 456 p.
4. A. A. Shanyavsky. Phys.mesomech. 17(6), 87 (2014). Crossref
5. I. P. Semenova, R. Z. Valiev, E. B. Yakushina, G. H. Salimgareeva, T. C. Lowe. J. Mater. Sci. 43, 7354 (2008).
6. C. Bathias, P. C. Paris. Gigacycle Fatigue in Mechanical Practice. Dekker Publisher Co, Marcel (2005) 328 p.
7. V. A. Oborin, M. V. Bannikov, O. B. Naimark, T. Palin-Luc. Tech. Phys. Lett. 36(11), 1061 (2010).
8. E. A. Moyseychik, V. P. Vavilov, M. V. Kuimova. J. Nondestr. Eval. 37(2), 28 (2018). Crossref
9. O. Plekhov, O. Naimark, R. Valiev, I. Semenova, N. Saintier, T. Palin-Luc. Tech. Phys. Lett. 34(7), 557 (2008). Crossref
10. O. B. Naimark. The Phisics of Metals and Metallography. 84, 327 (1997).
11. Yu. P. Sharkeev, A. Yu. Eroshenko, V. I. Danilov, A. I. Tolmachev, P. V. Uvarkin, Yu. A. Abzaev. Russ. Phys. J. 56, 1156 (2014). Crossref
12. A. Yu. Eroshenko, A. M. Mairambekova, Yu. P. Sharkeev, Zh. G. Kovalevskaya, M. A. Khimich, P. V. Uvarkin. Letters on Materials. 7(4), 469 (2017). Crossref
13. ASTM E1382-97 (2010) Standard Test Methods for Determining Average Grain Size Using Semiautomatic and Automatic Image Analysis.
14. O. B. Naimark, Yu. V. Bayandin, V. A. Leontiev. Phys. Mesomech. 12(5 - 6), 239 (2009). Crossref
15. V. I. Betekhtin, A. G. Kadomtsev, M. A. Narykova, M. V. Bannikov, S. G. Abaimov, I. S. Akhatov, T. Palin-Luc, O. B. Naimark. Phys. Mesomech. 20, 78 (2017). Crossref

Cited by (4)

1.
Aikol M. Mairambekova, Anna Y. Eroshenko, Vladimir A. Oborin, Mikhail V. Bannikov, Valentina V. Chebodaeva, Alena I. Terekhina, Oleg B. Naimark, Andrey I. Dmitriev, Yurii P. Sharkeev. Materials. 14(18), 5365 (2021). Crossref
2.
Y. Sharkeev, A. Eroshenko, E. Legostaeva, Z. Kovalevskaya, O. Belyavskaya, M. Khimich, M. Epple, O. Prymak, V. Sokolova, Q. Zhu, Z. Sun, H. Zhang. Metals. 12(7), 1136 (2022). Crossref
3.
E. Legostaeva, A. Eroshenko, V. Vavilov, Vladimir A. Skripnyak, N. Luginin, A. Chulkov, A. Kozulin, Vladimir V. Skripnyak, J. Schmidt, A. Tolmachev, P. Uvarkin, Y. Sharkeev. Metals. 13(5), 988 (2023). Crossref
4.
E. Legostaeva, A. Eroshenko, V. Vavilov, V. Skripnyak, A. Chulkov, A. Kozulin, V. Skripnyak, I. Glukhov, Y. Sharkeev. Materials. 15(23), 8480 (2022). Crossref

Similar papers