Research on heat resistance properties of coatings deposited by electrospark alloying on steel C45 by nickel-chromium alloys

A. Kozyr, L. Konevtsov, S. Konovalov, S. Kovalenko, V. Ivashenko
Received: 05 September 2017; Revised: 03 January 2018; Accepted: 08 January 2018
This paper is written in Russian
Citation: A. Kozyr, L. Konevtsov, S. Konovalov, S. Kovalenko, V. Ivashenko. Research on heat resistance properties of coatings deposited by electrospark alloying on steel C45 by nickel-chromium alloys. Letters on Materials, 2018, 8(2) 140-145
BibTex   DOI: 10.22226/2410-3535-2018-2-140-145

Abstract

Arrangement of elements in modified surface layers obtained after ESA of steel 45. Alloying material: а) Cr, b) X20Cr13, c) NiCr80-20, d) 12Ni14.Electrospark alloying with chromium-nickel steels X12CrNiTi18-9, X8Cr22Ni6Тi, X20CrNi72, X20Cr13, 12Ni14, heat-resistant alloys NiCr80-20 and pure metals Cr and Ni on samples of their steel 45 has been carried out. It is established that the resistance to oxidation of the formed doped layer in the temperature range 25-1000°C depends on the combination alloying elements of Ni and Cr, transferred by the anode material during electrospark alloying. The resistance of the samples of gas corrosion during the differential thermal analysis in the temperature range 25-1000°C and the heat-resistant test for 7h at 730°C in a series of doped layers formed by Cr, Cr-Ni alloy, heat-resistant steels, where the chrome coating exhibits the greatest resistance to thermal action. The conditions for the formation of a heat-resistant protective layer on steel С45 are determined: a) the presence of unrestricted solid solutions based on Cr, N, and Fe in the structure of the doped layer; b) the ratio of the elements in the doped layer is Cr (15 wt%) and Ni (40 wt%). The most balanced ratio in the doped Cr layer (15 wt%) and Ni (40 wt%), capable of forming on the surface of the doped layer protective structures based on Cr2O3, NiO, NiCr2O4, to resist oxidation and to protect the substrate from structural steels. It is proposed to use as alloying alloy NiCr80-20 alloy, which provides in the process of electrospark alloying a balanced ratio of Cr and Ni in the doped layer of steel 45 for formation of heat-resistant protection.

References (18)

1.
A. V. Ribalko, O. Sahin. Surface and Coatings Technology. 201(3 – 4), 1724 (2006). DOI: 10.1016/j.surfcoat.2006.02.044
2.
F. I. Panteleenko, V. V. Sarantsev, A. M. Stolin, P. M. Bazhin, E. L. Azarenko. Surface Engineering and Applied Electrochemistry. 47(4), 328 (2011). DOI: 10.3103/S1068375511040107
3.
A. V. Ribalko, O. Sahin, K. Korkmaz. Surface and Coatings Technology. 203(23), 3509 (2009). DOI: 10.1016/j.surfcoat.2009.05.002
4.
V. I. Agafii, V. I. Petrenko, V. M. Fomichev, V. I. Yurchenko, E. V. Yurchenko, A. I. Dikusar. Surface Engineering and Applied Electrochemistry. 49(3), 181 (2013). DOI: 10.3103/S1068375513030022
5.
A. D. Verkhoturov, L. A. Konevtsov, A. M. Shpilev A. M., P. S. Gordienko, E. S. Panin, I. A. Podchernyaeva, A. D. Panasyuk. Powder Metallurgy and Metal Ceramics. 47(1 – 2), 112 (2008). DOI: 10.1007/s11106‑008‑0015‑2
6.
A. D. Verkhoturov, V. M. Makienko, L. A. Konevtsov, V. Y. Vostrikov. Scientific notes of Komsomolsk-on-Amur State Technical University. 1(4), 69 (2015). (in Russian) [А. Д. Верхотуров, В. М. Макиенко, Л. А. Коневцов, В. Я. Востриков. Ученые записки Комсомольского-на-Амуре государственного технического университета. 1(4), 69 (2015).]
7.
A. D. Verkhoturov, I. A. Podchernyaeva, A. D. Panasyuk, N. M. Potapova, V. G. Radchenko, N. S. Stolyarova. Soviet powder metallurgy and metal ceramics. 27(3), 238 (1988). DOI: 10.1007/BF00802601
8.
Z. O. Dolgiy, W. Z. Shao, A. V. Kozyr, S. V. Martynov. Advanced Materials Research. 538 – 541, 175 (2012). DOI: 10.4028/www.scientific.net/AMR.538-541.175
9.
V. V. Mikhailov, A. E. Gitlevich, A. D. Verkhoturov, A. I. Mikhailyuk, A. V. Belyakov, L. A. Konevtsov. Surface Engineering and Applied Electrochemistry. 49(5), 373 (2013). DOI: 10.3103/S1068375513050074
10.
V. P. Luneva, A. D. Verhoturov, A. V. Kozyr, T. V. Glabets, V. N. Bruy. Elektronnaya Obrabotka Materialov. 41(4), 11 (2005). (in Russian) [В.П. Лунева, А.Д. Верхотуров, А.В. Козырь, Т.В. Глабец, В.Н. Бруй. Электронная Обработка Материалов. 41(4), 11 (2005).]
11.
V. I. Ivanov, A. D. Verkhoturov, L. A. Konevtsov. Surface Engineering and Applied Electrochemistry. 53(3), 218 (2017). DOI: 10.3103 / S1068375517030061
12.
A. A. Burkov. Welding International. 32(1), 72 (2018). DOI: 10.1080/09507116.2017.1382078
13.
S. V. Nikolenko, N. A Syui. Protection of Metals and Physical Chemistry of Surfaces. 53(5), 889 (2017). DOI: 10.1134/S207020511705015X
14.
A. V. Belyakov, A. N. Gorbachev, V. V. Mikhailov, B. F. Reutov, A. A. Fokin. Surface Engineering and Applied Electrochemistry. 53(3), 274 (2017). DOI: 10.3103/S1068375517030036
15.
S. V. Nikolenko, A. D. Verkhoturov, N. A. Syui, E. N. Kuz’michev. Surface Engineering and Applied Electrochemistry, 52(4), 342 (2016). DOI: 10.3103/S1068375516040098
16.
V. I. Ivanov, A. D. Verkhoturov, L. A. Konevtsov. Surface Engineering and Applied Electrochemistry. 53(3), 224 (2017). DOI: 10.3103/S1068375517030073
17.
A. A. Burkov, S. A. Pyachin, A. V. Zaytsev, E. A. Kirichenko, M. A. Teslina, N. A. Syuy. Letters on materials. 6(3), 163 (2016). (in Russian) [А.А. Бурков, С.А. Пячин, А.В. Зайцев, Е.А. Кириченко, М.А. Теслина, Н.А. Сюй. Письма о материалах. 6(3), 163 (2016).] DOI: 10.22226/2410‑3535‑2016‑3‑163‑167
18.
I. V. Semenova, G. M. Florianovich, A. V. Khoroshilov. Corrosion and corrosion protection. Moscow, Fizmatlit (2002) 336 p. (in Russian) [И. В. Семенова, Г. М. Флорианович, А. В. Хорошилов. Коррозия и защита от коррозии. Москва, Физматлит (2002) 336 с.]