Improving the oxidation resistance of Inconel 718 high-temperature nickel alloy using combined surface engineering technology

P.V. Kiryukhantsev-Korneev, A.E. Kudryashov, A.N. Sheveyko, A.S. Orekhov, E.A. Levashov show affiliations and emails
Received 19 May 2020; Accepted 24 June 2020;
This paper is written in Russian
Citation: P.V. Kiryukhantsev-Korneev, A.E. Kudryashov, A.N. Sheveyko, A.S. Orekhov, E.A. Levashov. Improving the oxidation resistance of Inconel 718 high-temperature nickel alloy using combined surface engineering technology. Lett. Mater., 2020, 10(4) 371-376


-A combined technology for deposition of protective coatings on a heat-resistant nickel alloy Inconel 718, combining methods of electro-spark deposition and magnetron sputtering, is proposed.
-Double-layer MS-ESA MoSiB/ZrSiB and CrAlSiB/ZrSiB coatings  increase the oxidation resistance of the nickel alloy, respectively, by 12 and 40 times.To increase the oxidation resistance of the Inconel 718 Ni alloy, a hybrid technology is proposed that combines electro-spark alloying (ESA) and magnetron sputtering (MS). Multiphase ZrSiB (ESA), ZrSiB, MoSiB, and CrAlSiB (MS) electrodes were obtained by self-propagating high-temperature synthesis. The study of the structure, composition and properties of single- and double-layers has been carried out. ZrB2 (73 wt.%), Si (21 wt.%), Ni and NiSix traces (<5 wt.%) were detected in the ESA-layer. The ESA-layer had a hardness of 19 GPa and elastic modulus of 351 GPa. The ZrSiB MS-layer contained a h-ZrB2 phase with a 4 –17 nm crystallites and Si-based amorphous regions. The layer hardness and elastic modulus were equal to 22 and 256 GPa, respectively. The MoSiB MS-layer had a conical structure, contained the h-MoSi2 and B-based amorphous phases. The layer showed hardness of 27 GPa and elastic modulus of 389 GPa. The Cr2Al, CrBx, and CrSi2 phases were found in the CrAlSiB MS-layer with hardness of 19 GPa and elastic modulus of 260 GPa. The 4.8 µm oxide film was formed on the surface of the Ni alloy after annealing in air at 900°C. The depth of the oxidation for ZrSiB / ZrSiB, MoSiB / ZrSiB, and CrAlSiB / ZrSiB MS-ESA coatings was 9.2, 0.4, and 0.12 µm, correspondingly. The ESA-layer acts as barrier to reduce the diffusion of elements from the substrate. Two-layer MoSiB / ZrSiB and CrAlSiB / ZrSiB coatings increase the oxidation resistance of the Ni alloy by 12 and 40 times, respectively, and can be recommended for deposition onto aircraft engine parts.

References (21)

1. E. N. Kablov. Liteynoye proizvodstvo. 7, 2 (2005). (in Russian) [Е. Н. Каблов. Литейное производство. 7, 2 (2005).].
2. B. S. Lomberg, S. A. Moses. All the materials. Encyclopedic reference book. 6, 2 (2007). (in Russian) [Б. С. Ломберг, С. А. Моисеев. Все материалы. Энциклопедический справочник. 6, 2 (2007).].
3. O. A. Bazyleva, E. G. Arginbaeva, S. A. Lutsk. Proceedings of VIAM. 4 (64), 3 (2018). (in Russian) [О. А. Базылева, Э. Г. Аргинбаева, С. А. Луцкая. Труды ВИАМ. 4 (64), 3 (2018).]. Crossref
4. O. G. Ospennikova. Aviation materials and technologies. S, 19 (2012). (in Russian) [О. Г. Оспенникова. АМИТ. S, 19 (2012).].
5. V. A. Poklad, Yu. P. Shkretov, N. V. Abraimov. Engine. 4 (70), 2 (2010). (in Russian) [В. А. Поклад, Ю. П. Шкретов, Н. В. Абраимов. Двигатель. 4 (70), 2 (2010).].
6. M. Khoking, V. Vasantasri, P. Sidki. Metallic and Ceramic Coatings: Manufacturing, Properties, and Application. Moscow, Mir (2000) 516 p. (in Russian) [М. Хокинг, В. Васантасри, П. Сидки. Металлические и керамические покрытия: Получение, свойства и применение (пер. с англ.). Москва, Мир (2000) 516 с.].
7. S. V. Nikolenko, A. D. Verkhoturov. New Electrode Materials for Electrospark Alloying. Vladivostok, Dal’nauka (2005) 217 p. (in Russian) [С. В. Николенко, А. Д. Верхотуров. Новые электродные материалы для электроискрового легирования. Владивосток, Дальнаука (2005) 217 с.].
8. D. A. Chubarov, S. A. Budinovsky, A. A. Smirnov. Aviation materials and technologies. 4 (45), 23 (2016). (in Russian) [Д. А. Чубаров, С. А. Будиновский, А. А. Смирнов. АМИТ. 4 (45), 23 (2016).].
9. S. Durdu, S. L. Aktug, K. Korkmaz. Surf. Coat. Technol. 236, 303 (2013). Crossref
10. N. Radek, K. Bartkowiak. Phys. Procedia. 39, 295 (2012). Crossref
11. A. Bejar, W. Schnake, W. Saavedra, J. P. Vildósolaet. J. Mater. Process. Tech. 176, 210 (2006). Crossref
12. D. V. Shtansky, I. V. Batenina, I. A. Yadroitsev, N. S. Ryashin, Ph. V. Kiryukhantsev-Korneev, A. E. Kudryashov, A. N. Sheveyko, I. Y. Zhitnyak, N. A. Gloushankova, E. A. Levashov. Surf. Coat. Technol. 208, 14 (2012). Crossref
13. Ph. V. Kiryukhantsev-Korneev, N. V. Shvyndina, A. D. Sytchenko, D. V. Shtansky, V. A. Gorshkov, E. A. Levashov. J. Phys.: Conf. Ser. 1431, 012027 (2020). Crossref
14. E. N. Kablov, S. A. Muboyajyan. Aviation materials and technologies. (in Russian) [Е. Н. Каблов, С. А. Мубояджян. АМТ. 5, 60 (2012).].
15. Advanced Materials and Technologies for Self-Propagating High-Temperature Synthesis. Moscow, Publishing House MISiS. (in Russian) [Е. А. Левашов, А. С. Рогачев, В. В. Курбаткина, Ю. М. Максимов, В. И. Юхвид. Перспективные материалы и технологии самораспространяющегося высокотемпературного синтеза. Москва, Изд. Дом МИСиС (2011) 377 с.].
16. А. E. Kudryashov, A. Yu. Potanin, D. V. Shtansky, E. A. Levashov. Surf. Coat. Technol. 285, 278 (2016). Crossref
17. A. E. Kudryashov, D. N. Lebedev, A. Yu. Potanin, Surf. Coat. Technol. 335, 104 (2018). Crossref
18. A. E. Kudryashov, Ph. V. Kiryukhantsev-Korneev, M. I. Petrzhik, E. A. Levashov. CIS Iron and Steel Review. 18, 46 (2019). Crossref
19. Ph. V. Kiryukhantsev-Korneev, I. V. Iatsyuk, N. V. Shvyndina, E. A. Levashov, D. V. Shtansky. Corros. Sci. 123, 319 (2017). Crossref
20. Ph. V. Kiryukhantsev-Korneev, J. F. Pierson, K. A. Kuptsov, D. V. Shtansky. Appl. Surf. Sci. 314, 104 (2014). Crossref
21. Ph. V. Kiryukhantsev-Korneev, M. V. Lemesheva, N. V. Shvyndina, E. A. Levashov, A. Yu. Potanin. Prot. Met. Phys. Chem. 54 (6), 1147 (2018). Crossref

Similar papers


1. Ministry of Science and Higher Education of the Russian Federation - Project No. 0718-2020-0034 of State assignment