Effect of Co, Ni, Mo and W on the corrosion properties of amorphous electrospark coatings

A.A. Burkov, A.V. Zaytsev, V.O. Krutikova show affiliations and emails
Received: 08 February 2018; Revised: 13 March 2018; Accepted: 19 March 2018
This paper is written in Russian
Citation: A.A. Burkov, A.V. Zaytsev, V.O. Krutikova. Effect of Co, Ni, Mo and W on the corrosion properties of amorphous electrospark coatings. Lett. Mater., 2018, 8(2) 190-195
BibTex   https://doi.org/10.22226/2410-3535-2018-2-190-195


The anticorrosive properties of amorphous coatings are improved when tungsten is added to their composition and cobalt is removed compared to the composition where all components are present.Coatings based on amorphous metals with a different number of elements: nickel, cobalt, molybdenum and tungsten, were obtained by electrospark deposition in a mixture of crystalline granules. The thickness of the deposited coatings was 20 to 33 μm. X-ray diffraction analysis showed a wide halo in the range of angles 2θ ~ 43 °, which indicates the predominance of the amorphous phase in the coating composition. The content of the amorphous phase, depending on the coatings composition, varied from 81 to 99 vol.%. The smallest fraction of the amorphous phase was observed in the coating without molybdenum. According to the EDS analysis, it was shown that the concentration of elements along the cross-section of coatings was constant, which indicates the homogeneity of the composition of the deposited coatings. A study by the SEM showed that the coatings have a homogeneous structure and do not have a precise boundary with the substrate which indicates good adhesion of the coatings to the substrate. Potentiodynamic polarization tests in 3.5% NaCl solution showed that amorphous coatings can improve of the corrosion resistance of the steel 35 surface up to 5 times. Tungsten reduced the rate of electrochemical corrosion of coatings, while cobalt worsen the corrosive properties of FeCrCoNiMoWCB coatings. A high-temperature corrosion test for 100 hours at temperature of 700°C showed that the samples with coatings were oxidized 3.4 to 7.9 times less than steel 1035. Barrier properties, under high-temperature gas corrosion, coatings without tungsten were ~ 2.3 times lower than coatings without cobalt.

References (28)

1. J.-C. Chang, J.-W. Lee, B.-S. Lou, C.-L. Lie, J. P. Chu. Thin Solid Films. 584, 253 (2015). Crossref
2. L. Liu, C. Zhang. Thin Solid Films. 561, 70 (2014). Crossref
3. S. D. Zhang, W. L. Zhang, S. G. Wang, X. J. Gu, J. Q. Wang. Corr. Sci. 93, 211 (2015). Crossref
4. S. Chen, R. Li, Q. Zheng, Z. Li. Materials Transactions. 57, 1807 (2016). Crossref
5. C. Li, D. Chen, W. Chen, L. Wang, D. Luo. Corr. Sci. 84, 96 (2014). Crossref
6. X.-R. Wang, Z.-Q. Wang, W.-S. Li, T.-S. Lin, P. He, C.-H. Tong. Materials Letters. 197, 143 (2017). Crossref
7. G. Wang, Z. Huang, P. Xiao, X. Zhu. Journal of Manufacturing Processes. 22, 34 (2016). Crossref
8. A. A. Burkov. Letters on Materials. 3(27), 254 (2017). (in Russian) [А. А. Бурков. Письма о материалах. 3(27), 254 (2017).]. Crossref
9. P. Rezaei-Shahreza, A. Seifoddini, S. Hasani. J. Alloys Compd. 738, 197 (2018). Crossref
10. J. Si, C. Du, T. Wang, Y. Wu, R. Wang, X. Hui. J. Alloys Compd. 741, 542 (2018). Crossref
11. Q. Hu, J. M. Wang, Y. H. Yan, S. Guo, S. S. Chen, D. P. Lu, J. Z. Zou, X. R. Zeng. Intermetallics. 93, 318 (2018). Crossref
12. M. Kachniarz, J. Salach, R. Szewczyk. Advances in Intelligent Systems and Computing. 644, 126 (2018). Crossref
13. S. D. Zhang, J. Wu, W. B. Qi, J. Q. Wang. Corr. Sci. 110, 57 (2016). Crossref
14. C. Wang, A. He, A. Wang, J. Pang, X. Liang, Q. Li, C. Chang, K. Qiu, X. Wang. Intermetallics. 84, 142 (2017). Crossref
15. H. Zohdi, H. R. Shahverdi, S. M. M. Hadavi. Electrochemistry Communications. 13, 840 (2011). Crossref
16. W.-H. Liu, F.-S. Shieu, W.-T. Hsiao. Surface & Coatings Technology. 249, 24 (2014). Crossref
17. M. Madinehei, P. Bruna, M. J. Duarte, E. Pineda, J. Klemm, F. U. Renner. J. Alloys Compd. 615, 128 (2014). Crossref
18. S. Li, Q. Wei, Q. Li, B. Jiang, Y. Chen, Y. Sun. Materials Science and Engineering C. 52, 235 (2015). Crossref
19. Y. Wang, Y. Zheng, J. Wang, M. Li, J. Shen. Acta Metallurgica Sinica. 51, 49 (2015). Crossref
20. K. Zhu, W. Jiang, J. Wu, B. Zhang. International Journal of Minerals, Metallurgy and Materials. 24, 926 (2017). Crossref
21. A. Wiest, G. Wang, L. Huang, S. Roberts, M. D. Demetriou, P. K. Liaw, W. L. Johnson Scripta Mater. 62, 540 (2010). Crossref
22. N. Ciftci, N. Ellendt, E. Soares Barreto, L. Mädler, V. Advanced Powder Technology. 29, 380 (2018). Crossref
23. A. A. Burkov, S. A. Pyachin. Mater. and Des. 80, 109 (2015). Crossref
24. E. I. Zamulaeva, E. A. Levashov, A. E. Kudryashov, P. V. Vakaev, M. I. Petrzhik. Surf. Coat. Technol. 202, 3715 (2008). Crossref
25. J. Cheng, B. Wang, Q. Liu, X. Liang. J. Alloys Compd. 716, 88 (2017). Crossref
26. M. Salmaliyan, F. Malek Ghaeni, M. Ebrahimnia. Surf. Coat. Technol. 321, 81 (2017). Crossref
27. Y. Wang, Y. Zheng, J. Wang, M. Li, J. Shen. Acta Metallurgica Sinica. 51, 49 2015. Crossref
28. Wang Y., Jiang S. L., Zheng Y. G., Ke W., Sun W. H., Wang J. Q. Materials and Corrosion 65(7), 733 (2014). Crossref

Cited by (1)

A. Burkov, M. Kulik. Lett. Mater. 9(2), 243 (2019). Crossref

Similar papers