Properties of Ti-Al intermetallic coatings obtained by electrospark processing in a mixture of Ti and Al granules

A.A. Burkov, M.A. Kulik ORCID logo show affiliations and emails
Received 18 September 2019; Accepted 18 November 2019;
This paper is written in Russian
Citation: A.A. Burkov, M.A. Kulik. Properties of Ti-Al intermetallic coatings obtained by electrospark processing in a mixture of Ti and Al granules. Lett. Mater., 2020, 10(1) 60-65
BibTex   https://doi.org/10.22226/2410-3535-2020-1-60-65

Abstract

The effect of hardness on the wear resistance of Ti-Al coatings is exponential, and is consistent with the Arсhard model.Titanium alloys attract a wide attention of researchers due to the unique combination of low density and high strength, hardness, corrosion resistance, biocompatibility, etc. Therefore, the study of new methods for processing titanium and the development of coatings from titanium intermetallic compounds seems relevant. In this paper, we consider the properties of Ti-Al coatings deposited by electrospark processing of a Ti6Al4V titanium alloy in a mixture of granules of titanium and aluminum in five different ratios with an aluminum content of 24 to 87 at.%. X-ray phase analysis showed the evolution of the intermetallic composition of the coatings with an increase in the aluminum content in the mixture of granules from the AlTi3 to Al3Ti phase. Potentiodynamic polarization tests in a 3.5 % NaCl solution showed that coatings could improve the corrosion resistance of the Ti6Al4V alloy. A high-temperature gas corrosion test for 100 hours at a temperature of 900°C showed that coated samples were oxidized 1.1– 3.4 times less than the Ti6Al4V alloy. The best properties was exhibited by the coating with the highest aluminum content. The coatings had an increased microhardness of 6.4 – 9.4 GPa. Coatings with a closer ratio of titanium to aluminum had the highest hardness. The wear resistance of the coatings in the dry slip mode at loads of 10 and 25 N was 4 – 27 and 6 – 36 times, respectively, higher than that of the Ti6Al4V alloy. The wear rate of the coatings decreased with increasing titanium concentration. The dependence of the wear resistance of coatings on their hardness for the obtained Ti-Al coatings is exponential, which is consistent with the Archard law.

References (21)

1. R. Sitek, J. Kaminski, J. Borysiuk, H. Matysiak, K. Kubiak, K. J. Kurzydlowski. Intermetallics. 36, 36 (2013). Crossref
2. M. Gizynski, S. Miyazaki, J. Sienkiewicz, S. Kuroda, H. Araki, H. Murakami, Z. Pakiela, A. Yumoto. Surf. Coat. Technol. 315, 240 (2017). Crossref
3. Q. Jia, D. Li, Z. Zhang, N. Zhang, W. Zhao. Mater. Res. Exp. 6, 096408 (2019). Crossref
4. C. J. Wang, P. K. Koech, X. Z. Lin. Journal of the Chinese. Institute of Engineers, Transactions of the Chinese Institute of Engineers, A. 42, 244 (2019). Crossref
5. S. PalDey, S. C. Deevi, T. L. Alford. Intermetallics. 12, 985 (2004). Crossref
6. I. A. Kurzina, E. V. Kozlov, Y. P. Sharkeev, A. I. Ryabchikov, I. B. Stepanov, I. A. Bozhko, M. P. Kalashnikov, D. O. Sivin, S. V. Fortuna. Surf. Coat. Technol. 201, 8463 (2007). Crossref
7. B. Guo, J. Zhou, S. Zhang, H. Zhou, Y. c. Pu, J. Chen. Appl. Surf. Sci. 253, 9301 (2007). Crossref
8. K. E. Machethe, A. P. I. Popoola, D. I. Adebiyi, O. S. I. Fayomi. Proc. Manuf. 7, 549 (2017). Crossref
9. A. A. Burkov. Lett. Mater. 5 (4), 371 (2015). Crossref
10. A. D. Verkhoturov. Russ. Engng. J. 56, 45 (1976).
11. A. D. Verkhoturov, L. M. Murzin. Soviet Powder Metallurgy and Metal Ceramics. 12, 680 (1973). Crossref
12. S. A. Pyachin, A. A. Burkov, V. S. Komarova. J. Surf. Invest. 7 (3), 515 (2013). Crossref
13. D. V. Lazurenko, I. A. Bataev, I. S. Laptev, A. A. Ruktuev, I. N. Maliutina, M. G. Golkovsky, A. A. Bataev. Mater. Charact. 134, 202 (2017). Crossref
14. A. A. Burkov, S. A. Pyachin, V. O. Krutikova. Hardening technologies and coatings. 15 (10), 451 (2019). (in Russian) [А. А. Бурков, С. А. Пячин, В. О. Крутикова. Упрочняющие технологии и покрытия. 15 (10), 451 (2019).].
15. A. A. Burkov, P. G. Chigrin. Surf. Coat. Technol. 351, 68 (2018). Crossref
16. X. L. Zhang, Z. H. Jiang, Z. P. Yao, Y. Song, Z. D. Wu. Corros. Sci. 51, 581 (2009). Crossref
17. Ł. Maj, J. Morgiel, K. Mars, G. Cios, A. Tarasek, E. Godlewska. Mater. Charact. 154, 31 (2019). Crossref
18. S.-G. Liu, J.-M. Wu, S.-C. Zhang, S.-J. Rong, Z.-Z. Li. Wear. 262, 555 (2007). Crossref
19. Y. Liu, W. Liu, Y. Ma, C. Liang, C. Liu, C. Zhang, Q. Cai. Surf. Coat. Technol. 353, 32 (2018). Crossref
20. C. Zhang, M. Zheng, Y. Wang, P. Gao, B. Gan. Surf. Coat. Technol. 378, 124821 (2019). Crossref
21. T. Telliskivi. Wear. 256, 817 (2004). Crossref

Similar papers

Funding

1. Russian Science Foundation - project No. 19-73-00031