Investigation of Tribological Properties of Sheet Metalfluoroplastic Materials

V. Kornopol'tsev, D. Mognonov, O. Ayurova, M. Dashitsyrenova, A. Subanakov show affiliations and emails
Received 20 February 2018; Accepted 15 April 2018;
This paper is written in Russian
Citation: V. Kornopol'tsev, D. Mognonov, O. Ayurova, M. Dashitsyrenova, A. Subanakov. Investigation of Tribological Properties of Sheet Metalfluoroplastic Materials. Lett. Mater., 2018, 8(3) 235-239
BibTex   https://doi.org/10.22226/2410-3535-2018-3-235-239

Abstract

A microphotograph of a cross-section of SMFM-Pb with a porous bronze layer having a "columnar" structure: 1 - steel base, 2 - spike of the bronze layer, 3 – PTFE-composition.The paper presents the results of tribotechnical tests, TG-, IR- and XRD analysis of wear products of sheet metalfluoroplastic material with lead (SMFM-Pb) in friction with hardened steel with high slip velocities. Tribotechnical tests shows that wear reduction during operation without lubrication in such regime is ensured by the presence in the working layer of a large volume of the PTFE-composition. Moreover, the Charpy rule for friction of SMFM-Pb with minimum wear rate is fully observed when the component of solid inclusions on the friction surface, in this case of the bronze frame, is one order of magnitude less softer and more shear-tolerant then the PTFE composition surrounding it, which is main donor during formation of the intermediate antifriction layer. Based on the IR, XRD analysis of wear products of SMFM-Pb, it can be said that the intermediate layer and the layers on the friction surfaces sheet metalfluoroplastic material with lead and counterbody have an inhomogeneous composition and consist of organofluorine compounds serving as a lubricant, including a mixture of lead oxyfluorides, fluorides and oxides. Pure PTFE is predominantly transferred to the counterbody, which is confirmed by the halo and reflex, characteristic of the amorphous and crystalline phases of polymer. In combination with a layer of PTFE transferred to the surface counterbody as highly oriented lamellas having a bearing high capacity and high surface hardness of the counterbody, the resulting third body provides increase of pV-factor a new SMFM-Pb at the maximum allowable temperature of 500-520 K to 5 MPa×m/c.

References (20)

1. D. C. Mitchell, G. Pratt. Friction, wear and physical of some filled P. T. F. E. bearing materials: Proc. Conf. on lubrication and wear. London (1957) P. 416.
2. E. R. Braithwaite. Solid Lubricants and Surfaces. London, Oxford: Pergamon press (1964) 286 p.
3. A. P. Semenov, Yu. V. Savinskiy. Metalloftoroplastovyie podshipniki. Moscow, Mashinostroenie (1976) 192 p. (in Russian) [А. П. Семенов, Ю. В. Савинский. Металлофторопластовые подшипники. Москва, Машиностроение (1976) 192 с.].
4. C. A. Byichkov, I. G. Lavrenko, O. Yu. Nechiporenko, I. M. Romashko, S. D. Mladinov. Open Information and Computer Integrated Technologies. 59, 343 (2013). (in Ukrainian) [C. А. Бычков, И. Г. Лавренко, О. Ю. Нечипоренко, И. М. Ромашко, С. Д. Младинов. Открытые информационные и компьютерные интегрированные технологии. 59, 343 (2013).].
5. C. A. Byichkov, I. G. Lavrenko, O. Yu. Nechiporenko, I. M. Romashko, S. D. Mladinov. Sostoyanie voprosa i perspektivy primeneniya MFL novykh proizvoditelei v uzlakh treniya samoletov: Materialy IV tehnicheskoy konferentsii Ukrainskogo otdeleniya SAMPE. Ukraine (2014) P. 9. (in Ukrainian) [C. А. Бычков, И. Г. Лавренко, О. Ю. Нечипоренко, И. М. Ромашко, С. Д. Младинов. Состояние вопроса и перспективы применения МФЛ новых производителей в узлах трения самолетов: Материалы IV технической конференции Украинского отделения SAMPE. Украина, Киев (2014) С. 9.].
6. V. N. Kornopoltsev, N. V. Kornopoltsev, D. M. Mognonov. J. Friction and wear. 30(4), 281 (2009). (in Russian) [В. Н. Корнопольцев, Н. В. Корнопольцев, Д. М. Могнонов. Трение и износ. 30(4), 385 (2009).].
7. V. N. Kornopoltsev. Patent RF № 2438829, IPC B22F7 / 04, F16C33 / 12, (2012). (in Russian) [В. Н. Корнопольцев. Патент РФ № 2438829, МПК B22F7 / 04, F16C33 / 12, (2012).].
8. V. N. Kornopoltsev. J. Friction and wear. 31(5), 359 (2010). (in Russian) [В. Н. Корнопольцев. Трение и износ. 31(5), 479 (2010).].
9. V. N. Kornopoltsev, N. V. Kornopoltsev, D. M. Mognonov, I. A. Farion. J. Chemistry for Sustainable Development. 13, 757 (2005). (in Russian) [В. Н. Корнопольцев, Н. В. Корнопольцев, Д. М. Могнонов, И. А. Фарион. Химия в интересах устойчивого развития. 13, 757 (2005).].
10. V. N. Kornopoltsev. Patent RF № 2602217: IPC С23С8 / 70, (2016). (in Russian) [В. Н. Корнопольцев. Патент РФ № 2602217, МПК С23 С8 / 70, (2016).].
11. N. V. Kornopoltsev. Patent RF№ 1418999. B22F7 / 04, (1993). (in Russian) [Н. В. Корнопольцев. Патент РФ № 1418999, B22F7 / 04, (1993).].
12. Ed. by Yu-Ving May, Zhong-Zhen Yu. Polimernyie nanokompozityi. Moscow, Tehnosfera (2011) 688 p. (in Russian) [Под ред. Ю-Винг Май, Жонг-Жен Ю. Полимерные нанокомпозиты. Москва, Техносфера (2011) 688 с.].
13. A. V. Anisimov, V. E. Bahareva, I. V. Nikitina, A. S. Savelov. Voprosy Materialovedeniya. 3(91), 83 (2017). (in Russian) [А. В. Анисимов, В. Е. Бахарева, И. В. Никитина, А. С. Савелов. Вопросы материаловедения. 3(91), 83 (2017).].
14. K. Nakamoto. IR spectra and Raman spectra of inorganic and coordination compounds. Moscow, Mir (1991) 336 p. (in Russian) [К. Накамото. ИК-спектры и спектры КР неорганических и координационных соединений. Москва, Мир (1991) 336 с.].
15. E. Prech, F. Byulmann, K. Affolter. Determination of the structure of organic compounds. Tables of spectral data. Moscow, Binom (2006) 438 p. (in Russian) [Э. Преч, Ф. Бюльманн, К. Аффольтер. Определение строения органических соединений. Таблицы спектральных данных. Москва, Бином (2006) 438 с.].
16. K. Nakanisi. Infrakrasnyie spektryi i stroenie organicheskih soedineniy. Moscow, Mir (1965) 216 p. (in Russian) [К. Наканиси. Инфракрасные спектры и строение органических соединений. Москва, Мир (1965) 216 с.].
17. M. A. Sidebottom, A. A. Pitenis, C. P. Junk, D. J. Kasprzak, G. S. Blackman, H. E. Burch et al. Wear. 362 - 363, 179 (2016).
18. K. L. Harris, A. A. Pitenis, W. G. Sawyer et. al. Macromol. 48, 3739 (2015).
19. Yu. K. Mashkov. Tribologiya konstruktsionnyih materialov. Omsk, OmGTU (1996) 304 p. (in Russian) [Ю. К. Машков. Трибология конструкционных материалов. Омск, ОмГТУ (1996) 304 c.].
20. N. P. Istomin, A. P. Semenov. Antifriktsionnyie svoystva kompozitsionnyih materialov na osnove ftorpolimerov. Moscow, Nauka (1981) 147 p. (in Russian) [Н. П. Истомин, А. П. Семенов. Антифрикционные свойства композиционных материалов на основе фторполимеров. Москва, Наука (1981) 147 с.].

Cited by (1)

1.
V. N. Kornopol�tsev, O. Zh. Ayurova, M. S. Dashitsyrenova, O. V. Il�ina, D. M. Mognonov. Russ J Appl Chem. 94(7), 873 (2021). Crossref

Similar papers