The experimental verification of the known flow line models describing local flow during ECAE (ECAP)

A.V. Perig, Igor S. Galan show affiliations and emails
Received: 12 April 2017; Revised: 15 May 2017; Accepted: 30 May 2017
Citation: A.V. Perig, Igor S. Galan. The experimental verification of the known flow line models describing local flow during ECAE (ECAP). Lett. Mater., 2017, 7(3) 209-217
BibTex   https://doi.org/10.22226/2410-3535-2017-3-209-217

Abstract

In spite of the existence of a number of studies suggesting various models of flow-lines during ECAE, there are few studies dedicated to the experimental visualization of the empirically observable flow-lines. The present research is focused on an experimental verification of the known previously published research results by Han et al (2008), Hasani et al (2008) — Hosseini et al (2009), and Tóth et al (2004) for material flow lines through a die of classical Segal geometry. The experimental research used physical simulation techniques to visualize moving marker trajectories in the vicinity of the channel intersection zone during ECAE of plasticine models. The successive positions of moving markers were recorded with a digital camera with further recognition and digitalization of experimental marker trajectories. This research has shown that experimental flow-lines do not fully fit Toth et al’s and Han et al’s flow models. It was found that the best fit of experimental flow-lines is achieved by using of Hasani et al’s — Hosseini et al’s model. Experimental / theoretical results which were obtained in the current study are of interest to the interdisciplinary SPD mechanics sphere. The experimental verification of the earlier published models quoted in the paper provides the succession, sustainability and academic integrity of the experimental / theoretical results from the SPD mechanics of the various schools of sciences. New results of the study relate to the experimental visualization of the moving markers positions during ECAE physical modeling and the experimental / theoretical determination of corresponding empirical flow-lines.

References (23)

1. W. Z. Han, Z. F. Zhang, S. D. Wu, S. X. Li. Mat. Sci. Eng. A-Struct. 476(1-2), 224 - 229 (2008). Crossref
2. A. Hasani, R. Lapovok, L. S. Tóth, A. Molinari. Scripta Mater. 58(9), 771 - 774 (2008). Crossref
3. E. Hosseini, M. Kazeminezhad. Comp. Mater. Sci. 44(4), 1107 - 1115 (2009). Crossref
4. B. V. Kucheryaev. Continuum Mechanics. Textbook. Study guide. Moscow, MISiS. (2006) 599 p. (in Russian). [Б. В. Кучеряев. Механика сплошных сред. Учебник. Москва, МИСИС. 2006. 599 с.].
5. A. M. Laptev, A. V. Perig, O. Yu. Vyal. Mater. Res.-Ibero-Am. J. 17(2), 359 - 366 (2014). Crossref
6. A. V. Perig, A. M. Laptev, N. N. Golodenko, Y. A. Erfort, E. A. Bondarenko. Mat. Sci. Eng. A-Struct. 527(16-17), 3769 - 3776 (2010). Crossref
7. A. V. Perig, I. G. Zhbankov, V. A. Palamarchuk. Mater. Manuf. Process. 28(8), 910 - 915 (2013). Crossref
8. A. V. Perig, I. G. Zhbankov, I. A. Matveyev, V. A. Palamarchuk. Mater. Manuf. Process. 28(8), 916 - 922 (2013). Crossref
9. A. V. Perig, A. M. Laptev. J Braz. Soc. Mech. Sci. Eng. 36(3), 469 - 476 (2014). Crossref
10. A. V. Perig, N. N. Golodenko. Chem. Eng. Commun. 201(9), 1221 - 1239 (2014). Crossref
11. A. V. Perig, N. N. Golodenko. Int. J. Adv. Manuf. Technol. 74(5-8), 943 - 962 (2014). Crossref
12. A. V. Perig. Mater. Res.-Ibero-Am. J. 17(5), 1226 - 1237 (2014). Crossref
13. A. V. Perig, A. F. Tarasov, I. G. Zhbankov, S. N. Romanko. Mater. Manuf. Process. 30(2), 222 - 231 (2015). Crossref
14. A. V. Perig, N. N. Golodenko. Mech. Sci. 6(1), 41 - 49 (2015). Crossref
15. A. Perig. Mater. Res.-Ibero-Am. J. 18(3), 628 - 638 (2015). Crossref
16. A. V. Perig, N. N. Golodenko. Mater. Res.-Ibero-Am. J. 19(3), 602 - 610 (2016). Crossref
17. A. V. Perig, N. N. Golodenko. Mater. Res. Express. 3(11), 115301 (2016). Crossref
18. A. V. Perig, N. N. Golodenko. Adv. Mater. Sci. Eng. 2017, 7015282 (2017). Crossref
19. L. S. Tóth, R. A. Massion, L. Germain, S. C. Baik, S. Suwas. Acta Mater. 52(7), 1885 - 1898 (2004). Crossref
20. S. Wolfram. Wolfram Language & System. Wolfram (2017). http://reference.wolfram.com. Accessed 22 June 2017.
21. M. A. Lavrentiev, L. A. Lusternik. A Course in the Calculus of Variations. Functions of several variables. Vol. I, Part 2. Textbook. Study guide. Moscow - Leningrad, ONTI NKTP. (1935) 400 p. (in Russian). [М. А. Лаврентьев, Л. А. Люстерник. Основы вариационного исчисления. Функции многих переменных. Учебник. Том 1. Часть 2. М.-Л., ОНТИ НКТП. 1935. 400 с.].
22. A. V. Efimov, A. F. Karakulin, A. S. Pospelov, S. V. Frolov, V. V. Lesin. Higher Mathematics for Engineering Students. Worked Examples and Problems with Elements of Theory. Part 3. Special Courses. Textbook. Study guide. Moscow, Fizmatlit Publisher. (2002) 576 p. (in Russian). [А. В. Ефимов, А. Ф. Каракулин, А. С. Поспелов, С. В. Фролов, В. В. Лесин. Сборник задач по математике для втузов. Часть 3. Учебное пособие. М., Физматлит. 2002. 576 с.].
23. V. De Pierre, F. Gurney, A. T. Male. Mathematical Calibration of the Ring Test with Bulge Formation: Technical rept. 1 Jan-30 Nov 1971. Westinghouse Astronuclear Lab Pittsburgh PA. (1972) 38 p. (Number: AD0750885).

Cited by (1)

1.
A. V. Perig, N. N. Golodenko. AIMS Materials Science. 4(6), 1240 (2017). Crossref

Similar papers