Destruction and Wear of Babbit Sn11Sb5.5Cu after Equal-Channel Angular Pressing

A.K. Valeeva, A.K. Akhunova, I.S. Valeev show affiliations and emails
Received 21 June 2018; Accepted 26 October 2018;
Citation: A.K. Valeeva, A.K. Akhunova, I.S. Valeev. Destruction and Wear of Babbit Sn11Sb5.5Cu after Equal-Channel Angular Pressing. Lett. Mater., 2018, 8(4) 473-477
BibTex   https://doi.org/10.22226/2410-3535-2018-4-473-477

Abstract

It was found that severe plastic deformation (SPD) by the ECAP method leads to the dispersion of intermetallic particles and the weakening of the adhesive bond of the particles with the matrix. In the case of coarse particles, their milling causes a decrease in wear. In the case of fine particles, the weakening of adhesion to the matrix causes an increase in wear.A computer simulation and natural experiments on the rod from babbit Sn11Sb5.5Cu deformation by the method of equal-channel angular pressing (ECAP) were carried out. Two structural states of the material were investigated. The first, obtained by usual crystallization, is characterized by large particles of intermetallic- and -phases. The second, obtained by rapid crystallization, has fine particles. ECAP was carried out in a matrix with a vertical and horizontal channels intersecting at a right angle. With the aim to ensure the least damage at the ECAP the computer simulation of the process in the software product DEFORM-2D was made, the deformation rate was selected. The wear was determined by the loss of the sample weight. Dependence of wear of babbitt, obtained by usual crystallization, had stages of running-in and stable wear. Wearing of the samples obtained by rapid crystallization showed that the running-in stage is absent. It was found that severe plastic deformation (SPD) by the ECAP method leads to the dispersion of intermetallic particles and the weakening of the adhesive bond of the particles with the matrix. In the case of coarse particles, their milling causes a decrease in wear. In the case of fine particles, the weakening of adhesion to the matrix causes an increase in wear. It can be said that for a material such as babbit Sn11Sb5.5Cu, an attempt to improve the tribological characteristics by means of the SPD method is untenable. There are less costly and simpler ways to obtain in babbits a structure with small intermetallic particles, which fully complies with the Charpy rule and has high tribological characteristics.

References (22)

1. A. I. Shpagin. Antifrictional alloys. Moscow, Metallurgiya (1956) 326 p. (in Russian) [А. И. Шпагин. Антифрикционные сплавы. Москва, Металлургия (1956) 326 с.].
2. Ed. Yu. M. Vinogradov. Wear-resistant materials in chemical engineering. Handbook. Leningrads, Mashinostroyenie (1977) 256 p. (in Russian) [Под ред. Ю. М. Виноградова. Износостойкие материалы в химическом машиностроении. Справочник. Ленинград, Машиностроение (1977) 256 с.].
3. F. A. Sadykov, N. P. Barykin, I. Sh. Valeev, V. N. Danilenko. Journal of Materials Engineering and Performance. 12, 29 (2003).
4. I. M. Lyubarskii, L. S. Palatnik. Metal physics of friction. Moscow, Metallurgy (1976) 176 p. (in Russian) [И. М. Любарский, Л. С. Палатник. Металлофизика трения. Москва, Металлургия (1976) 176 с.].
5. A. Upadhyaya, N. S. Mishra, N. Ojha. J. Mat. Sci. 32, 3227 (1997).
6. A. Sato, R. Mehrablan. Met. Trans. B. 7B, 443 (1976).
7. L. G. Korshunov, N. I. Noskova, A. V. Korznikov, N. L. Chernenko, N. F. Vil’danova. The Physics of Metals and Metallography. 108, 519 (2009).
8. N. I. Noskova, L. G. Korshunov, A. V. Korznikov. Metal Science and Heat Treatment. 50, 593 (2008).
9. F. A. Sadykov, N. P. Barykin, I. Sh. Valeev. Strength of Materials, 34(2), 196 (2002).
10. N. P. Barykin, R. F. Fazlyahmetov, A. Kh. Valeeva. Metal Science and Heat Treatment. 48, 88 (2006).
11. A. Kh. Valeeva, I. Sh. Valeev, R. F. Fazlyakhmetov, A. I. Pshenichnyuk. Letters on Materials. 5(2), 147 (2015). (in Russian) [А. Х. Валеева, И. Ш. Валеев, Р. Ф. Фазлыахметов, А. И. Пшеничнюк. Письма о материалах. 5(2), 147 (2015).]. Crossref
12. A. Kh. Valeeva, I. Sh. Valeev, R. F. Fazlyahmetov. Journal of Friction and Wear. 35(4), 311 (2014).
13. A. Kh. Valeeva, I. Sh. Valeev, R. F. Fazlyakhmetov, A. I. Pshenichnyuk. The Physics of Metals and Metallography. 116, 509 (2015).
14. A. Kh. Valeeva, I. Sh. Valeev, R. F. Fazlyakhmetov. Journal of Friction and Wear. 38(1), 53 (2017).
15. N. I. Noskova, R. R. Muluykov. Submicrocrystalline and nanocrystalline metals and alloys. The Ural Branch of the Russian Academy of Sciences, Yekaterinburg (2003) 279 p. (in Russian) [Н. И. Носкова, Р. Р. Мулюков. Субмикрокристаллические и нанокристаллические металлы и сплавы. Уральское отделение РАН, Екатеринбург (2003) 279 с.].
16. A. P. Zhilyaev, A. I. Pshenichnyuk. Superplasticity and grain boundaries in ultrafine-grained materials. Moscow, FIZMATLIT (2008) 320 p. (in Russian) [А. П. Жиляев, А. И. Пшеничнюк. Сверхпластичность и границы зерен в ультрамелкозернистых материалах. Москва, ФИЗМАТЛИТ (2008) 320 с.].
17. A. P. Zhilyaev, T. G. Langdon. Prog. Mater. Sci. 53, 893 (2008). Crossref
18. M. Markushev, E. Avtokratova, O. Sitdikov. Letters on Materials. 7(4), 459 (2017). Crossref
19. A. Kh. Valeeva, I. Sh. Valeev, R. R. Mulyukov, R. Khisamov. Letters on Materials, 6(4), 347 (2016) (in Russian) [А. Х. Валеева, И. Ш. Валеев, Р. Р. Мулюков, Р. Х. Хисамов. Письма о материалах 6(4), 347 (2016).]. Crossref
20. I. Sh. Valeev, A. Kh. Valeeva, A. Kh. Akhunova. Letters on Materials 7(3), 292 (2017). (in Russian) [Валеев И. Ш., Валеева А. Х., Ахунова А. Х. Письма о материалах. 7(3), 292 (2017).]. Crossref
21. V. L. Kolmogorov. Mechanics of metal forming: a textbook for higher education institutions. 2nd ed. Yekaterinburg, Publishing House of the USTU-UPI (2001) 836 p. (in Russian) [Колмогоров В. Л. Механика обработки металлов давлением. Екатеринбург, Изд-во УГТУ-УПИ (2001) 836 с.] ISBN: 5-321-00050-6.
22. V. S. Kovalenko. Metallographic reagents. Moscow, Metallurgiya (1981) 120 p. (in Russian) [В. С. Коваленко. Металлографические реактивы. Москва, Металлургия (1981) 120 с.].

Cited by (1)

1.
X. Wang, Z. Yin, Y. Chen. Mechanics & Industry. 21(1), 106 (2020). Crossref

Similar papers