Predicting of Sn11Sb5.5Cu babbitt fracture using computer simulation at equal-channel angular extrusion

A.K. Valeeva, A.K. Akhunova, I.S. Valeev
Received: 13 February 2018; Revised: 19 March 2018; Accepted: 20 March 2018
This paper is written in Russian
Citation: A.K. Valeeva, I.S. Valeev, A.K. Akhunova. Predicting of Sn11Sb5.5Cu babbitt fracture using computer simulation at equal-channel angular extrusion. Letters on Materials, 2018, 8(2) 165-168
BibTex   DOI: 10.22226/2410-3535-2018-2-165-168

Abstract

Finite element modeling performed in the software product DEFORM-2D accurately predicts the nature of failure at equal-channel angular pressing of Sn11Sb5.5Cu babbitt with different microstructure.The severe plastic deformation (SPD) methods are actively used to form ultrafine-grained structure in metals and alloys. They lead to a significant change in the physical and mechanical properties of materials. Since the large deformations were accumulated during SPD the material lost its ability to deform and begins to break down. The purpose of this work was to predict the fracture of Sn11Sb5.5Cu babbitt with a different microstructure at equal-channel angular pressing (ECAP) based on the finite element modeling. The tin babbit (11%Sb, 5.5%Cu, Sn the rest, weight %), obtained by conventional casting with a different crystallization rate was chosen for study. The increase of crystallization rate led to the formation of a structure with smaller and uniformly distributed intermetallic particles. The equipment for ECAP consists of a matrix with vertical and horizontal channels crossed at angle 90o and a punch located in the vertical channel. ECAP was conducted at ambient temperature, a rod of square cross-section 9.7 x 9.7 mm and a length of 60.0 mm was deformed. The transfer speed of the punch was 1 mm/min. Computer modeling was performed using the DEFORM–2D software package. A model of the above described equipment and the sample was built. The comparison of computer simulation data and natural experiment was performed. It was shown that the metal damage calculating by the Cockroft-Latham method, installed in the DEFORM–2D, makes it possible to predict the destruction of the babbitt Sn11Sb5.5Cu samples with different structures at ECAP.

References (25)

1.
N. I. Noskova, R. R. Muluykov. Submicrocrystalline and nanocrystalline metalls and alloys. Yekaterinburg, Urals Branch of the Russian Academy of Sciences (2003) 279 p. (in Russian). [Н. И. Носкова, Р. Р. Мулюков. Субмикрокристаллические и нанокристаллические металлы и сплавы. Екатеринбург, Уральское отделение РАН (2003) 279 с.]
2.
A. P. Zhilyaev, A. I. Pshenichnyuk. Superplasticity and grain boundaries in ultrafine materials. Moscow, FIZMATLIT (2008) 320 p. (in Russian) [А. П. Жиляев, А. И. Пшеничнюк. Сверхпластичность и границы зерен в ультрамелкозернистых материалах. Москва, ФИЗМАТЛИТ (2008) 320 с.]
3.
А. P. Zhilyaev, T. G. Langdon. Prog. Mat. Sci. 53, 893 (2008). DOI: 10.1016/j.pmatsci.2008.03.002
4.
E. G. Astafurova, G. G. Zakharova, E. V. Naydenkin, G. I. Raab, P. D. Odessky, S. V. Dobatkin. Letters on materials. 1(4), 198 (2011). (in Russian) [Е. Г. Астафурова, Г. Г. Захарова, Е. В. Найденкин, Г. И. Рааб, П. Д. Одесский, С. В. Добаткин. Письма о материалах. 1(4), 198 (2011).] DOI: 10.22226/2410‑3535‑2011‑4‑198‑202
5.
Yuechen Dun, V. D. Sitdikov, I. V. Aleksandrov, J. T. Vang. Letters on materials. 3(2), 169 (2013) (in Rusian). [Юечэн Дун, Ситдиков В. Д., Александров И. В., Ванг Дж. Т. Письма о материалах. 3(2), 169 (2013).] DOI: 10.22226/2410‑3535‑2013‑2‑169‑172
6.
E. V. Avtokratova, O. E. Mukhametdinova, O. Sh. Sitdikov, M. V. Markushev, S. V. S. N. Murty, M. J. N. V. Prasad, B. P. Kashyap. Letters on materials. 4(2), 93 (2014). DOI: 10.22226/2410‑3535‑2014‑2‑93‑95
7.
S. Sabbaghianrad, T. G. Langdon. Letters on materials. 5(3), 335 (2015). DOI: 10.22226/2410‑3535‑2015‑3‑335‑340
8.
M. Kawasaki, R. B. Figueiredo, T. G. Langdon. Letters on materials. 5(3), 233 (2015). DOI: 10.22226/2410‑3535‑2015‑3‑233‑239
9.
E. Avtokratova, O. Sitdikov, M. Markushev. Letters on materials. 5(3), 319 (2015). DOI: 10.22226/2410‑3535‑2015‑3‑319‑323
10.
E. I. Fakhretdinova, E. V. Bobruk, G. Yu. Sagitova, G. I. Raab. Letters on materials. 5(2), 202 (2015). (in Rusian) [Э. И. Фахретдинова, Е. В. Бобрук, Г. Ю. Сагитова, Г. И. Рааб. Письма о материалах 5(2), 202 (2015).] DOI: 10.22226/2410‑3535‑2015‑2‑202‑206
11.
M. Demirtas, G. Purcek, H. Yanar, Z. J. Zhang, Z. F. Zhang. Letters on materials. 5(3), 328 (2015). DOI: 10.22226/2410‑3535‑2015‑3‑328‑334
12.
G. R. Khalikova, G. F. Korznikova, V. G. Trifonov. Letters on materials. 7(1), 3 (2017). (in Russian) [Г. Р. Халикова, Г. Ф. Корзникова, В. Г. Трифонов. Письма о материалах. 7(1), 3 (2017).] DOI: 10.22226/2410‑3535‑2017‑1‑3‑7
13.
A. Kh. Valeeva, I. Sh. Valeev, R. R. Mulyukov, R. Khisamov. Letters on materials. 6(4), 347 (2016). (in Russian) [А. Х. Валеева, И. Ш. Валеев, Р. Р. Мулюков, Р. Х. Хисамов. Письма о материалах. 6(4), 347 (2016).] DOI: 10.22226/2410‑3535‑2016‑4‑347‑349
14.
L. G. Korshunov, N. I. Noskova, A. V. Korznikov, N. L. Chernenko, N. F. Vil’danova. The Physics of Metals and Metallography. 108, 519 (2009).
15.
N. I. Noskova, L. G. Korshunov, A. V. Korznikov. Metal Science and Heat Treatment. 50, 593 (2008).
16.
A. Kh. Akhunova, A. Kh. Valeeva, I. Sh. Valeev. BPMS 14(3), 322 (2017). (in Russian) [Ахунова А. Х., Валеева А. Х., Валеев И. Ш. ФПСМ. 14(3), 322 (2017).]
17.
A. V. Botkin, R. Z. Valiev, S. V. Dubinina, G. I. Raab, P. S. Stepin. Vestnik of NMSTU. 4, 38 (2011). (in Russian) [Боткин А. В., Валиев Р. З., Дубинина С. В., Рааб Г. И., Степин П. С. Вестник МГТУ им. Г. И. Носова. 4, 38 (2011).]
18.
I. Sh. Valeev, A. Kh. Valeeva, A. Kh. Akhunova. Letters on Materials. 7(3), 292 (2017). (in Russian) [Валеев И. Ш., Валеева А. Х., Ахунова А. Х. Письма о материалах. 7(3), 292 (2017).] DOI: 10.22226/2410‑3535‑2017‑3‑292‑295
19.
V. L. Kolmogorov. Mechanics of metal working with pressure: a textbook for high schools. 2nd ed. Ekaterinburg, Publishing House of the USTU-UPI (2001) 836 p. (in Russian) [Колмогоров В. Л. Механика обработки металлов давлением. Екатеринбург, УГТУ – УПИ (2001) 836 с.] ISBN 5‑321‑00050‑6
20.
M. G. Cockcroft, D. J. Latham. J. Inst.Metals. 96, 33 (1968).
21.
R. Hambli, M. Reszka. Int. J. Mech. Sci. 44, 1349 (2002).
22.
N. Ogawa, M. Shiomi, K. Osakada. Int. J. Mach. Tools Manuf. 42, 607 (2002).
23.
A. V. Botkin, R. Z. Valiev, P. S. Stepin, A. Kh. Baimukhametov. Deformation and destruction of materials. 7, 17 (2011). (in Russian) [Боткин А. В., Валиев Р. З., Степин П. С., Баймухаметов А. Х. Деформация и разрушение материалов. 7, 17 (2011).]
24.
F. A. Sadykov, N. P. Barykin, I. Sh. Valeev. Physics and chemistry of materials treatment. 2, 86 (2001). (in Russian) [Садыков Ф. А., Барыкин Н. П., Валеев И. Ш. Физика и химия обработки материалов. 2, 86 (2001).]
25.
F. A. Sadykov, N. P. Barykin, I. Sh. Valeev. Strength of Materials. 34(2), 196 (2002).