Dislocation structures forming due to an interaction of slip band with an elastic field of wedge disclination

J.V. Svirina, V.N. Perevezentsev, V.V. Rybin show affiliations and emails
Received 26 June 2019; Accepted 18 September 2019;
Citation: J.V. Svirina, V.N. Perevezentsev, V.V. Rybin. Dislocation structures forming due to an interaction of slip band with an elastic field of wedge disclination. Lett. Mater., 2019, 9(4) 409-413
BibTex   https://doi.org/10.22226/2410-3535-2019-4-409-413

Abstract

Dependence of the maximal misorientation of the broken dislocation boundary, forming due to the interaction of the slip band front with the elastic field of wedge disclination, on the distance between the disclination and the slip band.Rotational-type mesodefects — strain induced junction disclinations, are formed at joints and ledges of high-angle grain boundaries during plastic deformation of polycrystals. The strength of these mesodefects increases with deformation and, as a result, they create non-uniform elastic stress fields, which significantly affect the processes of structure formation, strain hardening and material’s fracture. In the present work, the interaction of a slip band propagating in a grain body under the action of an external stress field with an elastic field of wedge disclination is investigated by the discrete dislocation dynamics simulation method. The simulation results show that the behavior of the front of the band has common regularities. For a given distance between the slip band and the disclination y0, the behavior of the dislocation cluster in the front of the band essentially depends on the distance between the slip planes of the dislocations h. For small h, it is similar to the behavior of a dislocation pile-up. However, the maximum density of dislocations occurs not in the head of the cluster, as in the classical blocked dislocation pile-up, but in its central part. An increase in the distance h between dislocations slip planes leads to a “splitting” of the front of the band. For larger h the front of the band transforms into a broken from both sides dislocation wall. The minimal distance hc, above which such dislocation wall is formed, depends on the disclination strength ω0 and the distance y0. The maximal misorientation of the wall is equal to the disclination strength ω0 at y0 = 0. With an increase in the external stress, the wall overcomes the force barrier of the disclination and moves as a whole to the lateral surface of the crystal. Multiple reiteration of this process leads to the possible appearance of the system of broken from both sides dislocation walls in the body of grain.

References (23)

1. V. V. Rybin. Large plastic deformations and fracture of metals. Moscow, Metallurgiya (1986) 223 p. (in Russian) [В. В. Рыбин. Большие пластические деформации и разрушение металлов. Москва, Металлургия (1986) 223 с.].
2. V. V. Rybin, A. A. Zisman, N. Yu. Zolotorevsky. Acta Met. Mater. 41 (7), 2211 (1993). Crossref
3. V. V. Rybin, A. A. Zisman, N. Yu. Zolotorevsky. Phys. Solid State. 27 (1), 181 (1985) (in Russian) [В. В. Рыбин, А. А. Зисман, Н. Ю. Золоторевский. ФТТ. 27 (1), 181 (1985).].
4. V. N. Perevezentsev, G. F. Sarafanov, J. V. Svirina. Mater. Phys. and Mech. 21 (1), 78 (2014).
5. V. N. Perevezentsev, G. F. Sarafanov. Mater. Sci. Eng (a). 503 (1-2), 137 (2009). Crossref
6. V. N. Perevezentsev, G. F. Sarafanov. Tech. Phys. Lett. 31 (11), 936 (2005). Crossref
7. G. F. Sarafanov, V. N. Perevezentsev. Letters on Materials. 1 (1), 19 (2011). (in Russian) [Г. Ф. Сарафанов, В. Н. Перевезенцев. Письма о материалах. 1 (1), 19 (2011).]. Crossref
8. G. A. Salishchev, S. Yu. Mironov, S. V. Zherebtsov, A. N. Belyakov. Mater. Phys. and Mech. 25, 42 (2016). (in Russian) [Г.А. Салищев, С.Ю. Миронов, С.В. Жеребцов А. Н. Беляков. Физика и механика материалов. 25, 42 (2016).].
9. N. Yu. Zolotorevsky, V. V. Rybin, A. N. Matvienko, E. A. Ushanova, S. N. Sergeev. Letters on Materials. 8 (3), 305 (2018). [Н. Ю. Золоторевский, В. В. Рыбин, А. Н. Матвиенко, Э. А. Ушанова, С. Н. Сергеев. Письма о материалах. 8 (3), 305 (2018).]. Crossref
10. M. Seefeldt. Rev. Adv. Mater.Sci. 2, 44 (2001).
11. V. V. Rybin, V. N. Perevezentsev, J. V. Svirina. Mater. Phys. and Mech. 32 (3), 237 (2017).
12. V. V. Rybin, V. N. Perevezentsev, J. V. Svirina. Tech. Phys. The Russian Journal of Applied Physics. 63 (7), 974 (2018). Crossref
13. E. Van der Giessen, A. Needleman. Modelling Simul. Mater. Sci. Eng. 3, 689 (1995). Crossref
14. M. S. Wu. International Journal of Plasticity. 100, 142 (2018). Crossref
15. V. N. Perevezentsev, V. V. Rybin, V. N. Chuvildeev. Acta Metallurgica et Materialia. 40 (5), 887 (1992). Crossref
16. V. V. Rybin, I. M. Zhukovsky. Phys. Solid State. 20 (6), 1829 (1978). (in Russian) [В. В. Рыбин, И. М. Жуковский. ФТТ. 20 (6), 1829 (1978).].
17. T. Wang, J. Luo, Z. Xiao, J. Chen. Eur. J. Mech. - A / Solids. 28, 688 (2009). Crossref
18. G. F. Sarafanov, V. N. Perevezentsev. Russian Metallurgy (Metally). 10, 889 (2016). Crossref
19. A. E. Romanov, V. I. Vladimirov. Disclinations in crystalline solids. In: Dislocations in solids (ed. by F. R. N. Nabarro). Vol. 9. Amsterdam, Elsevier Science Publishers (1992) p. 191 - 402.
20. E. A. Rzhavtsev, M. Yu. Gutkin. Scripta Materialia. 100, 102 (2015). Crossref
21. S. V. Dmitriev, A. I. Pshenichnyuk, A. M. Iskandarov, A. A. Nazarova. Model. and Simul. in Mater. Sci. and Eng. 18 (2), 025012 (2010). Crossref
22. D. V. Bachurin, R. T. Murzaev, Yu. A. Baimova, A. A. Samigullina, K. A. Krylova. Letters on materials. 6 (3), 183 (2016). [Д.В. Бачурин, Р.Т. Мурзаев, Ю.А. Баимова, А.А. Самигуллина, К.А. Крылова. Письма о материалах. 6 (3), 183 (2016).]. Crossref
23. J. P. Hirth, J. Lothe. Theory of dislocations. New York, Wiley (1982) 839 p.

Similar papers

Funding

1. state assignment for conducting fundamental scientific research for 2013 – 2020 by the IAP RAS - task No. 0035‑2014‑0401