Modelling of disclinated phosphorene crystals

M.A. Rozhkov ORCID logo , N.D. Abramenko ORCID logo , A.M. Smirnov ORCID logo , A.L. Kolesnikova, A.E. Romanov show affiliations and emails
Received 22 November 2022; Accepted 10 January 2023;
Citation: M.A. Rozhkov, N.D. Abramenko, A.M. Smirnov, A.L. Kolesnikova, A.E. Romanov. Modelling of disclinated phosphorene crystals. Lett. Mater., 2023, 13(1) 45-49
BibTex   https://doi.org/10.22226/2410-3535-2023-1-45-49

Abstract

Lattice structure for [Ph]5-7v1 disclinated phosphorene and its band structure diagram with first Brillouin zoneIn this article, the disclinated modifications of two-dimensional phosphorene crystals are modelled. The modelling technique explores the crystal lattices of disclinated graphenes known as pseudo-graphenes to form a family of materials sharing the same lattice structure and symmetry. To design crystal lattice of disclinated phosphorenes Ph5-7v1 and Ph5‑6‑7v2, the structures of pseudo-graphenes G5-7v1 and G5‑6‑7v2 are chosen as reference ones, respectively. Optimization procedure done with density functional theory (DFT) calculations proves that the designed lattices of disclinated phosphorenes are structurally stable that allows to analyze the band structure of phosphorene allotropes under consideration.

References (32)

1. G. R. Bhimanapati, Z. Lin, V. Meunier, Y. Jung, J. Cha, S. Das, D. Xiao, Y. Son, M. S. Strano, V. R. Cooper, L. Liang, S. G. Louie, E. Ringe, W. Zhou, S. S. Kim, R. R. Naik, B. G. Sumpter, H. Terrones, F. Xia, Y. Wang, J. Zhu, D. Akinwande, N. Alem, J. A. Schuller, R. E. Schaak, M. Terrones, J. A. Robinson. ACS Nano. 9 (12), 11509 (2015). Crossref
2. S. Balendhran, S. Walia, H. Nili, S. Sriram, M. Bhaskaran. Small. 11 (6), 640 (2015). Crossref
3. H. Liu, Y. Du, Y. Deng, P. D. Ye. Chem. Soc. Rev. 44 (9), 2732 (2015). Crossref
4. M. Chhowalla, D. Jena, H. Zhang. Nat. Rev. Mater. 1 (11), 16052 (2016). Crossref
5. A. Carvalho, M. Wang, X. Zhu, A. S. Rodin, H. Su, A. H. Castro Neto. Nat. Rev. Mater. 1 (11), 16061 (2016). Crossref
6. K. S. Novoselov, A. K. Geim, S. V. Morozov, D. Jiang, M. I. Katsnelson, I. V. Grigorieva, S. V. Dubonos, A. A. Firsov. Nature. 438 (7065), 197 (2005). Crossref
7. S. Chen, A. L. Moore, W. Cai, J. W. Suk, J. An, C. Mishra, C. Amos, C. W. Magnuson, J. Kang, L. Shi, R. S. Ruoff. ACS Nano. 5 (1), 321 (2011). Crossref
8. C. Lee, X. Wei, J. W. Kysar, J. Hone. Science. 321 (5887), 385 (2008). Crossref
9. A. E. Romanov, A. L. Kolesnikova, T. S. Orlova, I. Hussainova, V. E. Bougrov, R. Z. Valiev. Carbon. 81, 223 (2015). Crossref
10. A. E. Romanov, M. A. Rozhkov, A. L. Kolesnikova. Lett. Mater. 8 (4), 384 (2018). Crossref
11. N. D. Abramenko, M. A. Rozhkov, A. L. Kolesnikova, A. E. Romanov. Rev. Adv. Mater. Technol. 2 (4), 9 (2020). Crossref
12. L. Tapasztó, P. Nemes-Incze, G. Dobrik, K. Jae Yoo, C. Hwang, L. P. Biró. Appl. Phys. Lett. 100 (5), 053114 (2012). Crossref
13. Q. Fan, L. Yan, M. W. Tripp, O. Krejčí, S. Dimosthenous, S. R. Kachel, M. Chen, A. S. Foster, U. Koert, P. Liljeroth, J. M. Gottfried. Science. 372 (6544), 852 (2021). Crossref
14. Y. Luo, C. Ren, Y. Xu, J. Yu, S. Wang, M. Sun. Sci. Rep. 11 (1), 19008 (2021). Crossref
15. N. Narita, S. Nagai, S. Suzuki, K. Nakao. Phys. Rev. B. 58 (16), 11009 (1998). Crossref
16. Z. Wang, X.-F. Zhou, X. Zhang, Q. Zhu, H. Dong, M. Zhao, A. R. Oganov. Nano Lett. 15 (9), 6182 (2015). Crossref
17. W. Hu, J. Yang, J. Phys. Chem. C. 119 (35), 20474 (2015). Crossref
18. M. Wang, R. Song, X. Zhang, G. Liu, S. Xu, Z. Xu, J. Liu, G. Qiao. Int. J. Hydrogen Energy. 46 (2), 1913 (2021). Crossref
19. M. Wu, H. Fu, L. Zhou, K. Yao, X. C. Zeng. Nano Lett. 15 (5), 3557 (2015). Crossref
20. J. Ma, D. Alfè, A. Michaelides, E. Wang. Phys. Rev. B - Condens. Matter Mater. Phys. 80 (3), 033407 (2009). https://doi.org/. Crossref
21. A. E. Romanov, V. I. Vladimirov. Phys. Status Solidi. 78 (1), 11 (1983). Crossref
22. A. E. Romanov, A. L. Kolesnikova. Prog. Mater. Sci. 54 (6), 740 (2009). https://doi.org/. Crossref
23. M. A. Rozhkov, A. L. Kolesnikova, I. S. Yasnikov, A. E. Romanov. Low Temp. Phys. 44 (9), 918 (2018). Crossref
24. M. A. Rozhkov, A. L. Kolesnikova, T. S. Orlova, L. V. Zhigilei, A. E. Romanov. Mater. Phys. Mech. 29 (1), 101 (2016).
25. J. P. Hirth, J. Lothe. Theory of Dislocations. Second Ed. Krieger publishing company, Malabar, Florida (1982).
26. M. A. Rozhkov, A. L. Kolesnikova, I. Hussainova, M. A. Kaliteevskii, T. S. Orlova, Y. Y. Smirnov, I. S. Yasnikov, L. V. Zhigilei, V. E. Bougrov, A. E. Romanov. Rev. Adv. Mater. Sci. 57 (2), 137 (2018). Crossref
27. A. N. Enyashin, A. L. Ivanovskii. Phys. Status Solidi. 248 (8), 1879 (2011). Crossref
28. Quantum Espresso. Available online: https://www.quantum-espresso.org/ (accessed on 1 Nov. 2022).
29. N. D. Abramenko, M. A. Rozhkov. Rev. Adv. Mater. Technol. 3 (4), 19 (2021). Crossref
30. Y. Baskin, L. Meyer. Phys. Rev. 100 (2), 544 (1955). Crossref
31. L. Lindsay, D. A. Broido. Phys. Rev. B. 81 (20), 205441 (2010). Crossref
32. X. Peng, Q. Wei, A. Copple. Phys. Rev. B. 90 (8), 085402 (2014). Crossref

Similar papers

Funding

1. Russian Science Foundation - 19-19-00617