Modelling of disclinated phosphorene crystals

M.A. Rozhkov ORCID logo , N.D. Abramenko ORCID logo , A.M. Smirnov ORCID logo , A.L. Kolesnikova, A.E. Romanov показать трудоустройства и электронную почту
Получена 22 ноября 2022; Принята 10 января 2023;
Эта работа написана на английском языке
Цитирование: M.A. Rozhkov, N.D. Abramenko, A.M. Smirnov, A.L. Kolesnikova, A.E. Romanov. Modelling of disclinated phosphorene crystals. Письма о материалах. 2023. Т.13. №1. С.45-49
BibTex   https://doi.org/10.22226/2410-3535-2023-1-45-49

Аннотация

Lattice structure for [Ph]5-7v1 disclinated phosphorene and its band structure diagram with first Brillouin zoneIn this article, the disclinated modifications of two-dimensional phosphorene crystals are modelled. The modelling technique explores the crystal lattices of disclinated graphenes known as pseudo-graphenes to form a family of materials sharing the same lattice structure and symmetry. To design crystal lattice of disclinated phosphorenes Ph5-7v1 and Ph5‑6‑7v2, the structures of pseudo-graphenes G5-7v1 and G5‑6‑7v2 are chosen as reference ones, respectively. Optimization procedure done with density functional theory (DFT) calculations proves that the designed lattices of disclinated phosphorenes are structurally stable that allows to analyze the band structure of phosphorene allotropes under consideration.

Ссылки (32)

1. G. R. Bhimanapati, Z. Lin, V. Meunier, Y. Jung, J. Cha, S. Das, D. Xiao, Y. Son, M. S. Strano, V. R. Cooper, L. Liang, S. G. Louie, E. Ringe, W. Zhou, S. S. Kim, R. R. Naik, B. G. Sumpter, H. Terrones, F. Xia, Y. Wang, J. Zhu, D. Akinwande, N. Alem, J. A. Schuller, R. E. Schaak, M. Terrones, J. A. Robinson. ACS Nano. 9 (12), 11509 (2015). Crossref
2. S. Balendhran, S. Walia, H. Nili, S. Sriram, M. Bhaskaran. Small. 11 (6), 640 (2015). Crossref
3. H. Liu, Y. Du, Y. Deng, P. D. Ye. Chem. Soc. Rev. 44 (9), 2732 (2015). Crossref
4. M. Chhowalla, D. Jena, H. Zhang. Nat. Rev. Mater. 1 (11), 16052 (2016). Crossref
5. A. Carvalho, M. Wang, X. Zhu, A. S. Rodin, H. Su, A. H. Castro Neto. Nat. Rev. Mater. 1 (11), 16061 (2016). Crossref
6. K. S. Novoselov, A. K. Geim, S. V. Morozov, D. Jiang, M. I. Katsnelson, I. V. Grigorieva, S. V. Dubonos, A. A. Firsov. Nature. 438 (7065), 197 (2005). Crossref
7. S. Chen, A. L. Moore, W. Cai, J. W. Suk, J. An, C. Mishra, C. Amos, C. W. Magnuson, J. Kang, L. Shi, R. S. Ruoff. ACS Nano. 5 (1), 321 (2011). Crossref
8. C. Lee, X. Wei, J. W. Kysar, J. Hone. Science. 321 (5887), 385 (2008). Crossref
9. A. E. Romanov, A. L. Kolesnikova, T. S. Orlova, I. Hussainova, V. E. Bougrov, R. Z. Valiev. Carbon. 81, 223 (2015). Crossref
10. A. E. Romanov, M. A. Rozhkov, A. L. Kolesnikova. Lett. Mater. 8 (4), 384 (2018). Crossref
11. N. D. Abramenko, M. A. Rozhkov, A. L. Kolesnikova, A. E. Romanov. Rev. Adv. Mater. Technol. 2 (4), 9 (2020). Crossref
12. L. Tapasztó, P. Nemes-Incze, G. Dobrik, K. Jae Yoo, C. Hwang, L. P. Biró. Appl. Phys. Lett. 100 (5), 053114 (2012). Crossref
13. Q. Fan, L. Yan, M. W. Tripp, O. Krejčí, S. Dimosthenous, S. R. Kachel, M. Chen, A. S. Foster, U. Koert, P. Liljeroth, J. M. Gottfried. Science. 372 (6544), 852 (2021). Crossref
14. Y. Luo, C. Ren, Y. Xu, J. Yu, S. Wang, M. Sun. Sci. Rep. 11 (1), 19008 (2021). Crossref
15. N. Narita, S. Nagai, S. Suzuki, K. Nakao. Phys. Rev. B. 58 (16), 11009 (1998). Crossref
16. Z. Wang, X.-F. Zhou, X. Zhang, Q. Zhu, H. Dong, M. Zhao, A. R. Oganov. Nano Lett. 15 (9), 6182 (2015). Crossref
17. W. Hu, J. Yang, J. Phys. Chem. C. 119 (35), 20474 (2015). Crossref
18. M. Wang, R. Song, X. Zhang, G. Liu, S. Xu, Z. Xu, J. Liu, G. Qiao. Int. J. Hydrogen Energy. 46 (2), 1913 (2021). Crossref
19. M. Wu, H. Fu, L. Zhou, K. Yao, X. C. Zeng. Nano Lett. 15 (5), 3557 (2015). Crossref
20. J. Ma, D. Alfè, A. Michaelides, E. Wang. Phys. Rev. B - Condens. Matter Mater. Phys. 80 (3), 033407 (2009). https://doi.org/. Crossref
21. A. E. Romanov, V. I. Vladimirov. Phys. Status Solidi. 78 (1), 11 (1983). Crossref
22. A. E. Romanov, A. L. Kolesnikova. Prog. Mater. Sci. 54 (6), 740 (2009). https://doi.org/. Crossref
23. M. A. Rozhkov, A. L. Kolesnikova, I. S. Yasnikov, A. E. Romanov. Low Temp. Phys. 44 (9), 918 (2018). Crossref
24. M. A. Rozhkov, A. L. Kolesnikova, T. S. Orlova, L. V. Zhigilei, A. E. Romanov. Mater. Phys. Mech. 29 (1), 101 (2016).
25. J. P. Hirth, J. Lothe. Theory of Dislocations. Second Ed. Krieger publishing company, Malabar, Florida (1982).
26. M. A. Rozhkov, A. L. Kolesnikova, I. Hussainova, M. A. Kaliteevskii, T. S. Orlova, Y. Y. Smirnov, I. S. Yasnikov, L. V. Zhigilei, V. E. Bougrov, A. E. Romanov. Rev. Adv. Mater. Sci. 57 (2), 137 (2018). Crossref
27. A. N. Enyashin, A. L. Ivanovskii. Phys. Status Solidi. 248 (8), 1879 (2011). Crossref
28. Quantum Espresso. Available online: https://www.quantum-espresso.org/ (accessed on 1 Nov. 2022).
29. N. D. Abramenko, M. A. Rozhkov. Rev. Adv. Mater. Technol. 3 (4), 19 (2021). Crossref
30. Y. Baskin, L. Meyer. Phys. Rev. 100 (2), 544 (1955). Crossref
31. L. Lindsay, D. A. Broido. Phys. Rev. B. 81 (20), 205441 (2010). Crossref
32. X. Peng, Q. Wei, A. Copple. Phys. Rev. B. 90 (8), 085402 (2014). Crossref

Другие статьи на эту тему

Финансирование на английском языке

1. Russian Science Foundation - 19-19-00617