Effect of the length of the tool pin on the hardening of 2024 aluminum alloy under friction stir processing

A.K. Valeeva ORCID logo , A.K. Akhunova, D.B. Kabirova, M.F. Imayev, R.F. Fazlyakhmetov show affiliations and emails
Received 11 November 2020; Accepted 15 February 2021;
This paper is written in Russian
Citation: A.K. Valeeva, A.K. Akhunova, D.B. Kabirova, M.F. Imayev, R.F. Fazlyakhmetov. Effect of the length of the tool pin on the hardening of 2024 aluminum alloy under friction stir processing. Lett. Mater., 2021, 11(2) 119-124
BibTex   https://doi.org/10.22226/2410-3535-2021-2-119-124

Abstract

Distribution of temperature, effective strain, displacement of material points and microhardness shows that a 2.0-mm-length pin is preferable for friction stir processing of  2024 aluminum alloy sheet.The paper reports the results of studies on the effect of the tool pin length on the microstructure and hardness of 2024 aluminum alloy sheets with a thickness of 3.0 mm during friction stir processing (FSP), as well as computer simulation data. The alloy in the initial state contains particles of phases θ (Al2Cu), S (Al2CuMg), and phases of complex composition (AlCuMnSiFe) with sizes ranging from 0.5 – 3 to several tens of microns. There is also a small amount of silicon-rich particles with sizes of 2 – 3 μm. The phases (AlCuMnSiFe) in their initial state often form skeletal precipitates up to 30 – 40 μm in size. Such precipitates consist of three phases differing in the ratio of elements. FSP of the material led to an increase in microhardness in the center of the treated zone and the advancing side from 53 ± 4 HV to 110 ± 8 HV, while the highest microhardness values practically do not depend on the pin length. The distribution of microhardness and microstructure in the processing area is uneven and depends on the length of the tool pin. The highest hardness of the central FSP zone is provided by a pin 2.0 mm long. It has been established that during the FSP of the alloy, coarse particles of intermetallic phases are refined and the products of refining in the FSP zone are distributed. The particles of the θ and S phases are refined weakly, while the others are refined to submicron sizes. To substantiate the choice of the effective pin length, a three-dimensional finite element modeling of the FSP in the DEFORM-3D software environment was performed. Distributions of effective deformation, temperature fields, and displacement of material points in the zone of thermomechanical action are analyzed. The simulation results agree with data of the physical experiment in that the most preferable pin under the considered processing conditions is a pin with a length of 2.0 mm since it allows one to obtain the widest and most symmetrical regions of intense heating and deformation.

References (23)

1. S. Mironov, Y. S. Sato, H. Kokawa. J. of Mater. Sci. and Technol. 34, 58 (2018). Crossref
2. H. J. Liu, J. J. Shen, Y. X. Huang, L. Y. Kuang, C. Liu, C. Li. Sci. Technol. Weld. Joining. 14 (6), 577 (2009). Crossref
3. M. Sarvghad Moghaddam, R. Parvizi, M. Haddad-Sabzevar, A. Davoodi. Materials and Design. 32 (5), 2749 (2011). Crossref
4. P. Xue, G. M. Xie, B. L. Xiao, Z. Y. Ma, L. Geng. Metall. Mater. Trans. A. 41, 2010 (2010). Crossref
5. A. I. Rudskoy, A. A. Naumov, E. V. Chernikov. Tsvetnyye metally. Chernyye metally. Special issue, 24. (2014). (in Russian) [А. И. Рудской, А. А. Наумов, Е. В. Черников. Цветные металлы. Черные металлы. Спец. вып., 24 (2014).].
6. R. Z. Valiev, I. V. Alexandrov. Nanostructured materials obtained by severe plastic deformation. Moscow, Logos (2000) 272 p. (in Russian) [Р. З. Валиев, И. В. Александров. Наноструктурные материалы, полученные интенсивной пластической деформацией. Москва, Логос (2000) 272 с.].
7. A. I. Rudskoy. Nanostrukturirovannye metallicheskie materialy (Nanostructured metallic materials). Nauka, S.-Petersburg (2011) 270 p. (in Russian) [А. И. Рудской. Наноструктурированные металлические материалы. Наука, С.-Петербург (2011) 270 с.].
8. H. Pashazadeh, J. Teimournezhad, A. Masoumi. Materials and Design. 55, 619 (2014). Crossref
9. M. K. Besharati-Givi, Parviz Asadi. Advances in Friction Stir Welding and Processing. Elsevier, Woodhead Publishing (2014) 823 p.
10. T. R. McNelley. Lett. Mater. 5 (3), 246 (2015). Crossref
11. S. M. Aktarer, T. Küçükömeroğlu. Journal of Achievements of Materials and Manufacturing Engineering. 75 (2), 55 (2016). Crossref
12. Y. Chen, H. Ding, J. Li, Z. Cai, J. Zhao, W. Yang. Mater. Sci. Eng. A. 650, 281 (2016). Crossref
13. X. Chen, Y. Zhang, M. Cong. Vacuum. 175, 109292 (2020). Crossref
14. M. Elyasi, H. A. Derazkola, M. Hosseinzadeh. Proceedings of the Institution of Mechanical Engineers, Part B: J. of Engineering Manufacture. 230, 1234 (2016). Crossref
15. M. Assidi, L. Fourment, S. Guerdoux, T. Nelson. Int. J. of Mach. Tools and Manuf. 50 (2), 143 (2010). Crossref
16. T. Nakamura, T. Obikawa, E. Yukutake, S. Ueda, I. Nishizaki. Modern Mechanical Engineering. 8 (1), 78 (2018). Crossref
17. A. K. Akhunova, M. F. Imayev, A. K. Valeeva. Lett. Mater. 9 (4), 456 (2019). Crossref
18. V. S. Kovalenko. Metallurgical reagents. Moscow, Metallurgiya (1981) 120 p. (in Russian) [В. С. Коваленко. Металлографические реактивы. Москва, Металлургия (1981) 120 с.].
19. L. F. Mondolfo. Structure and Properties of Aluminum Alloys. Moscow, Metallurgy (1979) 640 р. (in Russian) [Л. Ф. Мондольфо. Структура и свойства алюминиевых сплавов. Москва, Металлургия (1979) 640 с.].
20. A. Staszczyk, J. Sawicki, B. Adamczyk-Cieslak. Materials (Basel). 12 (24), 4168 (2019). Crossref
21. A. Kh. Valeeva, A. Kh. Akhunova, M. F. Imayev, R. F. Fazlyakhmetov. Ultrafine-grained and nanostructured materials: Proceedings of the Open School-Conference of the CIS Countries. Ufa, RIC BashSU (2020) p. 199. (in Russian) [А. Х. Валеева, А. Х. Ахунова, М. Ф. Имаев, Р. Ф. Фазлыахметов. Ультрамелкозернистые и наноструктурные материалы: Сборник трудов Открытой школы-конференции стран СНГ. Уфа, РИЦ БашГУ (2020) с. 199.].
22. R. G. Buchheit, R. P. Grant, P. F. Hiava, B. Mckenzie, G. L. Zender. J. of the Electrochemical Society. 144 (8), 2621 (1997). Crossref
23. R. S. Mishra, Z. Y. Ma. Mater. Sci. and Eng.: R. 50(1-2), 1 (2005). Crossref

Similar papers

Funding

1. Institute for Metals Superplast - AAAA-A19-119021390106-1