Variation in the yield point of differentially quenched rails at severe plastic deformation

A.A. Yuriev, A.M. Glezer, V.E. Gromov, V.E. Kormyshev, Y.F. Ivanov, A.P. Semin show affiliations and emails
Received 10 November 2020; Accepted 21 December 2020;
Citation: A.A. Yuriev, A.M. Glezer, V.E. Gromov, V.E. Kormyshev, Y.F. Ivanov, A.P. Semin. Variation in the yield point of differentially quenched rails at severe plastic deformation. Lett. Mater., 2021, 11(1) 100-103
BibTex   https://doi.org/10.22226/2410-3535-2021-1-100-103

Abstract

Diagram of sample preparation in making steel subjects of research by methods of transmission electron microscopy.Regularities and mechanisms of the formation of structural-phase states and properties at different depths in the railheads along the central axis and fillet after differential quenching of 100‑meter rails and extremely long operation (passed tonnage 1411 million tons gross weight) have been revealed by the methods of the modern material science. It has been shown that differential quenching is accompanied by the formation of a morphologically multi-aspect structure presented by grains of lamellar perlite, ferrite-carbide mixture and structure-free ferrite. It has been shown that extremely long operation of rails is accompanied by numerous transformations of the metal structure of the rail head. Based on the analysis of the evolution of structural phase states along different directions in the head of 100‑meter differentially quenched rails after a passed tonnage of 1411 million tons and an estimation of the contributions into the strengthening of surface layers, the dependence of the total yield point on the distance to the surface along the central axis and the symmetry axis of fillet is revealed. During long-term operation of rails, the degradation of the lamellar pearlite structure occurs in a layer with a thickness of ≈10 mm. A submicron- and nano-sized subgrain structure is formed in the surface layer. It is shown that the failure of the rail metal will take place in the surface layer of fillet, where the critical level of the structure is formed.

References (20)

1. V. E. Gromov, O. A. Peregudov, Yu. F. Ivanov, S. V. Konovalov, A. A. Yuriev. Evolution of structural-phase states of rail metal in long-term operation. Novosibirsk, SB RAS (2017) 164 p. (in Russian) [В. Е. Громов, О. А. Перегудов, Ю. Ф. Иванов, С. В. Коновалов, А. А. Юрьев. Эволюция структурно-фазовых состояний металла рельсов при длительной эксплуатации. Новосибирск, Изд-во СО РАН (2017) 164 с.].
2. V. E. Gromov, A. B. Yuriev, K. V. Morozov, Yu. F. Ivanov. Microstructure of quenched rails. Cambridge, CISP Ltd (2016) 153 p.
3. V. E. Panin, V. E. Gromov, Yu. F. Ivanov, A. A. Yuriev, V. E. Kormyshev. Doklady Rossijskoj Akademii Nauk. Fizika, Tekhnicheskie Nauki. 494, 68 (2020). (in Russian) [В. Е. Панин, В. Е. Громов, Ю. Ф. Гванов, А. А. Юрьев, В. Е. Кормышев. Доклады Российской Академии Наук. Физика, Технические Науки. 494, 68 (2020).]. Crossref
4. Y. F. Ivanov, V. E. Gromov, A. A. Yur’ev, A. M. Glezer, N. A. Popova, O. A. Peregudov, S. V. Konovalov. Russ. Metall. 10, 985 (2018). Crossref
5. V. E. Gromov, A. M. Glezer, K. V. Morozov, Yu. F. Ivanov, K. V. Volkov. Russ. Metall. 13, 1094 (2015). Crossref
6. Yu. Ivanisenko, W. Lojkowski, H.-J. Fecht. Science Forum. 539 - 543, 4681 (2007). Crossref
7. Yu. Ivanisenko, I. Maclaren, X. Souvage, R. Z. Valiev, H. J. Fecht. Acta Mater. 54, 1659 (2006). Crossref
8. J.-W. Seo, H.-K. Jun, S.-J. Kwon, D.-H. Lee. Int. J. Fatigue. 83, 184 (2016). Crossref
9. R. Lewis, P. Christoforou, W. J. Wang, A. Beagles, M. Burstow, S. R. Lewis. Wear. 430 - 431, 383 (2019). Crossref
10. J. Kalousek, D. M. Fegredo, E. E. Laufer. Wear. 105, 199 (1985). Crossref
11. R. Skrypnyk, M. Ekh, J. C. O. Nielsen, B. A. Pålsson. Wear. 428 - 429, 302 (2019). Crossref
12. D. Kim, L. Quagliato, D. Park, N. Kim. Wear. 420 - 421, 184 (2019). Crossref
13. Y. B. Huang, L. B. Shi, X. J. Zhao, Z. B. Cai, Q. Y. Liu, W. J. Wang. Wear. 400 - 401, 62 (2018). Crossref
14. O. A. Peregudov, K. V. Morozov, V. E. Gromov, A. M. Glezer, Yu. F. Ivanov. Russ. Metall. 4, 371 (2016). Crossref
15. V. E. Kormyshev, V. E. Gromov, Yu. F. Ivanov, A. M. Glezer, A. A. Yuriev, A. P. Semin, R. V. Sundeev. Materials Letters. 268, 127499 (2020). Crossref
16. V. E. Kormyshev, E. V. Polevoy, A. A. Yuriev, V. E. Gromov, Yu. F. Ivanov. Izvestiya. Ferrous Metallurgy. 63 (2), 108 (2020). (in Russian) [В.Е Кормышев., Е.В. Полевой, А.А. Юрьев, В.Е. Громов, Ю.Ф. Иванов. Известия Высших Учебных Заведений. Черная Металлургия. 63 (2), 108 (2020).]. Crossref
17. V. E. Gromov, Yu. F. Ivanov, V. E. Kormyshev, A. A. Yuriev, A. P. Semin, Yu. A. Rubannikova. Progress in Physics of Metals. 21 (4), 527 (2020). Crossref
18. A. M. Glezer. Bulletin of the Russian Academy of Sciences: Physics. 71 (12), 1722 (2007). Crossref
19. A. Mazilkin, B. Straumal, A. Kilmametov, P. Straumal, B. Baretzky. Materials Transactions. 60, 1489 (2019). Crossref
20. V. E. Panin, I. A. Shulepov, L. S. Derevyagina, S. V. Panin, A. I. Gordienko, I. V. Vlasov. Physical Mesomechanics. 22 (6), 5 (2019). (in Russian) [В. Е. Панин, И. А. Шулепов, Л. С. Деревягина, С. В. Панин, А. И. Гордиенко, И. В. Власов. Fizicheskaya Mezomekhanika. 22 (6), 5 (2019).]. Crossref

Similar papers

Funding