Atypical behavior of materials during current-assisted tension

Received 24 August 2022; Accepted 22 September 2022;
Citation: V.V. Stolyarov. Atypical behavior of materials during current-assisted tension. Lett. Mater., 2022, 12(4) 292-297


Представлены две деформационные кривые при растяжении без тока и с током в сплаве с памятью формы. Видны скачки напряжения вверх и вниз, вызванные фазовым преращением и электропластическим эффектом, соответственно.The passage of electric current in conductive materials is accompanied by a variety of physical phenomena, one of which is the so-called electroplastic effect, which manifests itself in a decrease in flow stresses and an increase in plasticity. Despite the early discovery of the electroplastic effect, the proposed mechanisms could not fully explain the observed experimental facts. Moreover, as shown in this study, some modes / regimes of electric current can lead to atypical strengthening phenomena even in pure metals and to atypical upward stress jumps in alloys with phase transformations. The paper considers examples of strengthening under a pulsed current with a density greater than the critical one and a duty cycle of more than 103 in pure metals, shape memory alloys, ferrite-pearlitic and stainless steels. It is assumed the selected current regimes provide the minimum thermal effect and maximum stress relaxation. The literature data and the results obtained, suggests that among the possible causes of strengthening there may be structural changes (recrystallization and refinement of grains, transformation of lamellar phases into spherical ones), martensitic transformation. It is concluded the atypical current effect is due to the material nature and high duty cycle of the electric current.

References (22)

1. O. A. Troitskii. JETP Letters. 1, 18 (1969).
2. V. E. Gromov, L. B. Zuev, E. V. Kozlov, V. Ya. Tsellermayer. Electrostimulated plasticity of metals and alloys. Moscow, Nedra (1996) 280 p. (in Russian) [Электростимулированная пластичность металлов и сплавов. Москва, Недра (1996) 280 с.].
3. H. Conrad. Mater. Sci. Eng. A. 287, 276 (2000). Crossref
4. T. A. Perkins, T. J. Kronenberger, J. T. Roth. J. of Manufact. Sci. Eng. 129, 84 (2007). Crossref
5. W. A. Salandro, C. Bunget, L. Mears. ASME 2010 Conference (2010) 34043.
6. X. U. Chun, L. I. Ya-Nan, X. H. Rao. Trans. Nonferrous Met. Soc. China. 24, 3777 (2014). Crossref
7. Y. Zhou, G. O. Chen, X. S. Fu, W. L. Zhou. Trans. Nonferrous Met. Soc. China. 24, 1012 (2014). Crossref
8. H. Xie, Q. Wang, F. Peng, K. Liu, X. Dong, J. Wang. Trans. Nonferrous Met. Soc. China. 25, 2686 (2015). Crossref
9. T. Lee, J. Magargee, M. K. Ng, J. Cao. Inter. Journal of Plasticity. 94, 44 (2017). Crossref
10. A. Subrahmanyam, C. Shivaprasad, G. Suman, D. V. Raju, K. V. Rahul, R. N. Verkata. J. Manuf. Process. 75, 268 (2022). Crossref
11. K. Okazaki, M. Kagawa, H. Conrad. Mater. Sci. Eng. 45, 109 (1980). Crossref
12. C. Rudolf, R. Goswami, W. Kang, J. Thomas. Acta Mater. 209, 116776 (2021). Crossref
13. A. V. Pokoev, J. V. Osinskaya. Manifestation of Magnetoplastic Effect in Some Metallic Alloys. Defect Diffusion Forum. 383, 180 (2018). Crossref
14. H. Xu, X. Liu, Di. Zhang, X. Zhang. J. Mater. Sci. Technol. 35, 1108 (2019). Crossref
15. A. A. Shibkov, M. A. Zheltov, A. E. Zolotov, A. A. Denisov, M. F. Gasanov, D. V. Michlik. A method for increasing the mechanical stability and strength of aluminum-magnesium alloy sheet blanks using the effect of electroplastic deformation. Patent RU № 2 624 87707.07. (2017). (in Russian) [A. A. Шибков, M. A. Желтов, A. Э. Золотов, A. A. Денисов, M. Ф. Гасанов, D. V. Михлик. Метод повышения механической стабильности и прочности алюминий-магниевых листовых заготовок с использованием эффекта электропластической деформации. Патент РФ 2 624 87707.07 (2017).].
16. V. Stolyarov. Europ. Symp. Martens. Transform. ESOMAT 2009 (2009) 06033. Crossref
17. S. Zhao, R. Zhang, Y. Chong et al. Nat. mater. 20, 468 (2021). Crossref
18. M. A. Pakhomov, V. V. Stolyarov. Metal Sci. Heat Treatment. 63, 236 (2021). Crossref
19. P. Long. J Phys. Conf. Ser. 1187 (3), 032054 (2019). Crossref
20. D. D. Ben, H. J. Yang, Y. R. Ma, X. H. Shao, J. C. Pang, Z. F. Zhang. Mater. Sci. Eng. A. 725, 28 (2018). Crossref
21. C. Gennari, L. Pezzato, E. Simonetto, R. Gobbo, M. Forzan, I. Calliari. Materials. 12, 1911 (2019). Crossref
22. O. Tyc, L. Heller, P. Sittner. Shap. Mem. Superelasticity. 7 (1), 65 (2021). Crossref

Similar papers


1. Ministry of Science and Higher Education of the Russian Federation - RF-2296.61321X0037