Effect of temperature on the specific energy of beta/alpha interfaces in Ti-6Al-4V alloy

Received 01 December 2016; Accepted 01 March 2017;
This paper is written in Russian
Citation: M.A. Murzinova. Effect of temperature on the specific energy of beta/alpha interfaces in Ti-6Al-4V alloy. Lett. Mater., 2017, 7(1) 55-59
BibTex   https://doi.org/10.22226/2410-3535-2017-1-55-59


Most of titanium alloys contain two phases at temperatures of processing and exploitation: -phase with HCP lattice and -phase with BCC lattice. Stability of two-phase structure and thermodynamics of / transformation, which occurs in a wide range of temperatures, considerably depend on the specific energy of interphase boundaries, and, consequently, on their structure. Basing on the literature data, four schemes of “planar” semicoherent interfaces, in which mismatches in interatomic distances are accommodated by two or three sets of edge misfit dislocations, were plotted. Such types of conjugation are observed on side and end interfaces of lamellas in titanium alloys. The procedure developed by J.H. van der Merwe and G.J. Shiflet was used for estimation of specific energy of interphase boundaries in Ti-6Al-4V alloy. Effect of temperature and content of alloying elements on lattice parameters and elastic properties of the - and - phases in Ti-6Al-4V alloy was taken into account for calculations. This approach allowed one to estimate the change in the energy of interphase boundaries in the alloy in temperature interval 600–975C, where diffusion / transformation and enrichment of -phase by vanadium are observed. It was shown that the energy of interphase boundaries in Ti-6Al-4V alloy decreased by 1.3–1.5 times with increasing temperature from 600 to 975C at all examined types of conjugation. Depending on the structure the energy of interphase boundaries can vary from 0.201 to 0.337 J/m2 at 975C and from 0.298 to 0.429 J/m2 at 600C.

References (26)

1. A. Kelly, G. W. Groves. Crystallography and crystal defects. Longman, London, (1970).
2. D. E. Laughlin, K. Hono eds. Physical Metallurgy: 3-Volume Set, 5th edition, Newnes, (2014), p. 2960.
3. G. J. Shiflet, Mater. Sci. Eng. 81, 61 (1986).
4. J. P. Hirth, G. Spannos, M. G. Hall, H. I. Aaronson. Mechanisms for the development of tent-shaped and invariant-plane-strain-type surface reliefs for plates formed during diffusional phase transformations.. Acta Materialia 46 No.3, (1998) 857 - 868.
5. S. Z. Bokshtein (Ed.) Diffusion Processes, Structure, and Properties of Metals. Springer; Softcover reprint of the original 1st ed. 1965 edition (December 16, 2013), p.135.
6. S. L. Semiatin, D. U. Furrer, in ASM Handbook, Fundamentals of Modeling for Metals Processing, ed. by S. L. Semiatin, D. U. Furrer, Materials Park, OH: ASM International, (2009), Vol. 22, p. 536.
7. W. Sha, S. Malinov. Titanium alloys: modelling of microstructure, properties and applications. First published 2009, Woodhead Publishing Limited and CRC Press LLC, (2009), p. 598.
8. J. Da Costa Teixeira, B. Appolaire, E. Aeby-Gautier, S. Denis, L. He ´richer, Computational Materials Science 42, 266 (2008).
9. R. Shi, N. Ma, Y. Wang, Acta Materialia 60, 4172 (2012).
10. T. Furuhara, H. J. Lee, E. S. K. Menon, H. I. Aaronson, Metall. Trans. A 21, 1627 (1990).
11. T. Furuhara, H. I. Aaronson, Acta Metall. Mater. 39, 2857 (1991).
12. T. Furuhara, J. M. Howe, H. I. Aaronson, Acta Metall. Mater. 39, 2873 (1991).
13. T. Furuhara, T. Ogawa, T. Maki, Phil. Mag. Lett. 72, 175 (1995).
14. E. S. K. Menon, H. I. Aaronson, Acta Metall. Mater. 39, 1975 (1986).
15. N. Miyano, A. Takahashi, J. Miyazaki, K. Ameyama, Mater. Trans. 49, 471 (2008).
16. N. Miyano, K. Ameyama, G. C. Weatherly, Mater. Trans. 43, 1547 (2002).
17. S. Suri, G. B. Viswanathan, T. Neeraj, D.-H. Houi, M. J. Mills, Acta mater. 47, 1019 (1999).
18. F. Ye, W.-Z. Zhang, , D. Qiu, Acta Materialia 52, 2449 (2004).
19. F. Ye, W.-Z. Zhang, Acta Materialia 54, 871 (2006).
20. R. C. Pond, S. Celotto, J. P. Hirth, Acta Mater. 51, 5385 (2003).
21. S. Nag, R. Banerjee, R. Srinivasan, J. Y. Hwang, M. Harper, H. L. Fraser, Acta Mater. 57, 2136 (2009).
22. J. H. van der Merwe, G. J. Shiflet, P. M. Stoop, Metallurgical Transactions A 22, 1165 (1991).
23. J. H. van der Merwe, G. J. Shiflet, Acta Metal. Mater. 42, 1173 (1994).
24. M. A. Murzinova, S. V. Zherebtsov, G. A. Salishchev, Journal of Experimental and Theoretical Physics 122, 705 (2016).
25. J. W. Elmer, T. A. Palmer, S. S. Babub, E. D. Specht, Mater. Sci. Eng. A 391, 104 (2005).
26. J. H. van der Merwe, Proc. Phys. Soc. A 63, 616 (1950).

Cited by (1)

Z. Jingli, Z. Yongqiang, L. Huiming, H. Quan, G. Ping, P. Hao, H. Hongmiao, J. Guoyu, Q. Cheng. J. of Materi Eng and Perform. 30(1), 229 (2021). Crossref

Similar papers