Tribological behavior of the electron beam additive manufactured Ti6Al4V-Cu alloy

A.V. Nikolaeva ORCID logo , A.P. Zykova, A.V. Chumaevskii, A.V. Vorontsov ORCID logo , E.O. Knyazhev, A.V. Nikonenko, S.Yu. Tarasov show affiliations and emails
Received 08 February 2023; Accepted 05 March 2023;
Citation: A.V. Nikolaeva, A.P. Zykova, A.V. Chumaevskii, A.V. Vorontsov, E.O. Knyazhev, A.V. Nikonenko, S.Yu. Tarasov. Tribological behavior of the electron beam additive manufactured Ti6Al4V-Cu alloy. Lett. Mater., 2023, 13(2) 158-163
BibTex   https://doi.org/10.22226/2410-3535-2023-2-158-163

Abstract

The results of this work demonstrate improved wear resistance of the Ti6Al4V-Cu alloys, because copper provides refining the β-grains and consequently α- and α′ crystallites.Earlier studies have shown that it is possible to successfully obtain Ti6Al4V-Cu alloys with various copper concentrations using the double-wire electron beam additive manufacturing. Obtaining these alloys is of a practical interest for creating a titanium-base composite material with reduced risk of spontaneous combustion, which could be used in friction units at elevated temperatures. This article presents a study of the tribological properties of Ti6Al4V titanium alloy samples produced by layer-by-layer electron beam melting with the addition of Cu from a wire. The results of this work demonstrate an improved wear resistance of Ti6Al4V-Cu alloys. Such a result was achieved due to the grain refinement and precipitation of intermetallic Ti2Cu nanosized particles. For instance, the value of linear wear of alloys Ti6Al4V-6 wt.% Cu and Ti6Al4V-9.7 wt.% Cu is 46 % and 40 % less, respectively, as compared to the original alloy Ti6Al4V. It has been established that the plastic deformation penetration below the worn surface decreases with the increase in the concentration of copper in titanium alloy samples.

References (17)

1. J. C. Williams, R. R. Boyer. Metals. 10 (6), 705 (2020). Crossref
2. E. A. Kolubaev, V. E. Rubtsov, A. V. Chumaevsky, E. G. Astafurova. Phys. Mesomech. 25 (6), 479 (2022). Crossref
3. A. O. F. Hayama, P. N. Andrade, A. Cremasco, R. J. Contieri, C. R. M. Afonso, R. Caram. Mater. Design. 55, 1006 (2014). Crossref
4. M. Peters, J. Kumpfert, C. H. Ward, C. Leyens. Adv. Eng. Mater. 5 (6), 419 (2003). Crossref
5. M. Millogo, S. Bernard, P. Gillard, F. Frascati. J. Loss. Prevent. Proc. 56, 254 (2018). Crossref
6. F. Yu, H. Wang, G. Yuan, X. Shu. Appl. Phys. A-Mater. 123, 278 (2017). Crossref
7. L. Shao, G. Xie, X. Liu, Y. Wu, J. Yu, K. Feng, W. Xue. Corros. Sci. 190, 109641 (2021). Crossref
8. C. Ohkubo, I. Watanabe, J. P. Ford, H. Nakajima, T. Hosoi, T. Okabe. Biomaterials. 21, 421 (2000). Crossref
9. Y. Geng, S. Konovalov, X. Chen. Usp. Fiz. Met. 21, 26 (2020). Crossref
10. Y. Hu, S. Wu, P. Withers, J. Zhang, H. Bao, Y. Fu, G. Kang. Mater. Design. 192, 108708 (2020). Crossref
11. G. Xian, J. Oh, J. Lee, S. Cho, J.-T. Yeom, Y. Choi, N. Kang. Weld. World. 66 (5), 847 (2022). Crossref
12. J. Lin, Y. Lv, Y. Liu, Z. Sun, K. Wang, Z. Li, Y. Wu, B. Xu, J. Mech. Behav. Biomed. Mater. 69, 19 (2017). Crossref
13. V. Utyaganova, A. Vorontsov, A. Eliseev, K. Osipovich, K. Kalashnikov, N. Savchenko, V. Rubtsov, E. A. Kolubaev. Russ Phys J. 62, 1461 (2019). Crossref
14. N. A. Rosli, M. R. Alkahari, M. F. bin Abdollah, S. Maidin, F. R. Ramli, S. G. Herawan. J. Mater. Res. Technol. 11, 2127 (2021). Crossref
15. X. Peng, L. Kong, J. Y. H. Fuh, H. Wang. J. Manuf. Mater. Process. 5 (2), 38 (2021). Crossref
16. D. Zhang, D. Qiu, M. A. Gibson, Y. Zheng, H. L. Fraser, D. H. StJohn, M. A. Easton. Nature. 576 (7785), 91 (2019). Crossref
17. A. P. Zykova, A. V. Nikolaeva, A. V. Vorontsov, A. V. Chumaevskii, S. Yu. Nikonov, E. N. Moskvichev, D. A. Gurianov, N. L. Savchenko, E. A. Kolubaev, S. Yu. Tarasov. Phys. Mesomech. 25 (6), 5 (2022). (in Russian) [А. П. Зыкова, А. В. Николаева, А. В. Воронцов, А. В. Чумаевский, С. Ю. Никонов, Е. Н. Москвичев, Д. А. Гурьянов, Н. Л. Савченко, Е. А. Колубаев, С. Ю. Тарасов. Физическая мезомеханика. 25 (6), 5 (2022).]. Crossref

Similar papers

Funding

1. Institute of Strength Physics and Materials Science of the Siberian Branch of the RAS - FWRW-2021-0012