Composites based on mechanosynthesized G-phases Ti6Co16Si7 and Ti6Ni16Si7: phase composition and properties

M.A. Eryomina ORCID logo , S.F. Lomayeva, S.N. Paranin, S.V. Zayats ORCID logo show affiliations and emails
Received 27 November 2023; Accepted 01 February 2024;
Citation: M.A. Eryomina, S.F. Lomayeva, S.N. Paranin, S.V. Zayats. Composites based on mechanosynthesized G-phases Ti6Co16Si7 and Ti6Ni16Si7: phase composition and properties. Lett. Mater., 2024, 14(1) 27-32
BibTex   https://doi.org/10.48612/letters/2024-1-27-32

Abstract

Mechanical alloying of elemental powders and subsequent thermal treatment were applied to synthesize Ti6Co16Si7- and Ti6Ni16Si7- based composites.Mechanical alloying of elemental powders in Ti-M-Si (M = Co, Ni) systems and subsequent thermal treatment were applied to synthesize new Ti6Co16Si7- and Ti6Ni16Si7- based composites (≈90 vol.%). These phases are formed above 545°C and 459°C for cobalt- and nickel-containing systems, respectively, and belong to a family of G-phases. Mechanically alloyed powders were then prepared as bulk composites via magnetic pulse compaction. As-compacted composites were thoroughly characterized, including density, hardness, wear resistance, and electrical resistance.

References (45)

1. E. Gladyshevskii. Powder Metall. Met. Ceram. 1, 46 (1962).
2. H. Beattie, W. Hagel. JOM. 9, 911 (1957).
4. A. Grytsiv, X. Chen, P. Rogl, R. Podloucky, H. Schmidt, G. Giester, V. Pomjakushin. J. Sol. St. Chem. 180, 733 (2007).
5. K. Holman, E. Morosan, P. Casey, L. Li, N. Ong, T. Klimczuk, C. Felser, R. Cava. Mater. Res. Bul. 43, 9 (2008).
6. X. Hu, G. Chen, C. Ion, K. Ni. J. Phase Equilib. 20 (5), 508 (1999).
7. B. Hu, X. Yuan, Y. Du, J. Wang, Z. Liu. J. Alloys Compd. 693, 344 (2017).
8. A. Oshkour, S. Pramanik, S. Shirazi, M. Mehrali, Y. Yau, N. Osman. The Scientific World J. 2014, 616804 (2014).
9. W. Sheng, D. Liu, H. Wang. Surf. Coat. Technol. 202, 2871 (2008).
10. J. Vitek. Metall. Trans. A. 18A, 154 (1987).
11. F. Weitzer, M. Naka, N. Krendelsberger, F. Stein, C. He, Y. Du, J. Schuster. Z. Anorg. Allg. Chem. 636, 982 (2010).
12. K. Ducki. J. Achievements in Mater. Manuf. Eng. 18 (1-2), 87 (2006).
13. K. Lindgren. Effects of irradiation and thermal ageing on the nanoscale chemistry of steel welds: PhD thesis. Göteborg, Sweden (2018) 71 p.
14. M. Wambach, P. Ziolkowski, E. Müller, A. Ludwig. ACS Comb. Sci. 21 (5), 362 (2019).
15. M. Yang, J. Zhu, T. Yang, J. Luan, Z. Jiao, X. Fan, B. Kuhn, X. Xiong, C. Wang, C. Liu, X. Liu. Mater. Sci. Eng. A. 745, 390 (2018).
16. F. Spiegel, D. Bardos, P. Beck. Ternary G and E silicides and germanides of transition elements. Trans. AIME. 27, 575 (1963).
17. The Open Quantum Materials Database. Webpage https://oqmd.org/materials/entry/19018.
18. H. Dong, R. Zhong, L. Liu, Z. Wang, C. Yang, Z. Luo, W. Zhang. Mater. Charact. 196, 112611 (2023).
19. R. Silva, G. Vacchi, C. Kugelmeier, I. Santos, A. Filho, D. Magalhãs, C. Afonso, V. Sordi, C. Rovere. J. Mater. Sci. Technol. 98, 123 (2022).
20. M. Nascimento, F. Gallo, F. Queiroz, M. Mendes, C. Eckstein, L. Nogueira Jr., I. May, G. Pereira, L. Almeida. J. Mater. Res. Technol. 22, 382 (2023).
21. C. Wang, X. Huang, M. Yang, J. Han, Z. Yao, T. Yang, Y. Zhao, W. Liu, L. Huang, C. Huan, S. Pan, Z. Li, C. Wang, Y. Chen, C. Yang, X. Liu. Mater. & Design. 222, 111021 (2022).
22. X. Liu, C. Liu, J. Wu, X. Zhang, X. Zhu, J. Wang. Mater. Sci. Eng. A. 832, 142421 (2022).
23. S. Kondrat’ev, Yu. Belikova, M. Fuks, M. Frolov, S. Petrov. Metal Sci. Heat Treat. 64 (1-2), 34 (2022).
24. Y. Chen, D. Wu, D. Li, Y. Li, S. Lu. Acta Met. Sin. 36, 637 (2023).
25. M. Yang, C. Huang, J. Han, H. Wu, Y. Zhao, T. Yang, S. Jin, C. Wang, Z. Li, R. Shu, C. Wang, H. Lu, G. Sha, X. Liu. J. Mater. Sci. Technol. 136, 180 (2023).
26. N. Cautaerts, E. Rauch, J. Jeong, G. Dehm, C. Liebscher. Scr. Mater. 201, 113930 (2021).
27. D. King, M. Yang, T. Whiting, X. Liu, M. Wenman. Acta Mater. 183, 350 (2020).
28. N. Vaché, P. Steyer, C. Duret-Thual, M. Perez, T. Douillard, E. Rauch, M. Véron, G. Renou, F. Dupoiron, C. Augustin, S. Cazottes. Materialia. 9, 100593 (2020).
29. A. Jacob, C. Domain, G. Adjanor, P. Todeschini, E. Povoden-Karadeniz. J. Nucl. Mater. 533, 152091 (2020).
30. X. Liu, W. Lu, X. Zhang. Acta Mater. 183, 51 (2020).
31. Y. Chen, X. Dai, X. Chen, B. Yang. Mater. Charact. 149, 74 (2019).
32. R. Badyka, G. Monnet, S. Saillet, C. Domain, C. Pareige. J. Nucl. Mater. 514, 266 (2019).
33. M. Abbasi, I. Park, Y. Ro, Y. Ji, R. Ayer, J. Shim. Mater. Charact. 148, 297 (2019).
34. S. Ahmed, J. Greedan, C. Boyer, M. Niewczas. Inorg. Chem. 57 (22), 14144 (2018).
35. G. Rixecker, R. Haberkorn. J. Alloys Compd. 316, 203 (2001).
36. E. Olevsky, A. Bokov, G. Boltachev, N. Volkov, S. Zayats, A. Ilyina, A. Nozdrin, S. Paranin. Acta Mechanica. 224 (12), 3177 (2013).
37. E. Shelekhov, T. Sviridova. Met. Sci. Heat Treat. 42, 309 (2000).
38. E. Illekova, J. Harnuskova, R. Florek, F. Simancık, I. Matko, P. Svec Sr. J. Therm. Anal. Calorim. 105, 583 (2011).
39. JMicroVision 1.2.7 software Webpage https://jmicrovision.github.io/v127/install127.htm.
40. Z. Zhang, P. Hellström, M. Östling, S. Zhang, J. Lu. Appl. Phys. Lett. 88, 043104 (2006).
41. G. Samsonov, I. Vinitskii. Handbook of refractory compounds. New York (1980) 555 p.
42. W. Williams. Int. J. Refract. Met. Hard Mater. 17, 21 (1999).
45. Y. Kobayashi, S. Tada, H. Mizoguchi. Nanoscale. 13 (39), 16533 (2021).

Similar papers

Funding

1. Ministry of Science and Higher Education of the Russian Federation - BB_2021_121030100003-7
2. Ministry of Science and Higher Education of the Russian Federation - 122011200363-9