Composites based on mechanosynthesized G-phases Ti6Co16Si7 and Ti6Ni16Si7: phase composition and properties

M.A. Eryomina ORCID logo , S.F. Lomayeva, S.N. Paranin, S.V. Zayats ORCID logo показать трудоустройства и электронную почту
Получена 27 ноября 2023; Принята 01 февраля 2024;
Эта работа написана на английском языке
Цитирование: M.A. Eryomina, S.F. Lomayeva, S.N. Paranin, S.V. Zayats. Composites based on mechanosynthesized G-phases Ti6Co16Si7 and Ti6Ni16Si7: phase composition and properties. Письма о материалах. 2024. Т.14. №1. С.27-32
BibTex   https://doi.org/10.48612/letters/2024-1-27-32

Аннотация

Mechanical alloying of elemental powders and subsequent thermal treatment were applied to synthesize Ti6Co16Si7- and Ti6Ni16Si7- based composites.Mechanical alloying of elemental powders in Ti-M-Si (M = Co, Ni) systems and subsequent thermal treatment were applied to synthesize new Ti6Co16Si7- and Ti6Ni16Si7- based composites (≈90 vol.%). These phases are formed above 545°C and 459°C for cobalt- and nickel-containing systems, respectively, and belong to a family of G-phases. Mechanically alloyed powders were then prepared as bulk composites via magnetic pulse compaction. As-compacted composites were thoroughly characterized, including density, hardness, wear resistance, and electrical resistance.

Ссылки (45)

1. E. Gladyshevskii. Powder Metall. Met. Ceram. 1, 46 (1962).
2. H. Beattie, W. Hagel. JOM. 9, 911 (1957).
4. A. Grytsiv, X. Chen, P. Rogl, R. Podloucky, H. Schmidt, G. Giester, V. Pomjakushin. J. Sol. St. Chem. 180, 733 (2007).
5. K. Holman, E. Morosan, P. Casey, L. Li, N. Ong, T. Klimczuk, C. Felser, R. Cava. Mater. Res. Bul. 43, 9 (2008).
6. X. Hu, G. Chen, C. Ion, K. Ni. J. Phase Equilib. 20 (5), 508 (1999).
7. B. Hu, X. Yuan, Y. Du, J. Wang, Z. Liu. J. Alloys Compd. 693, 344 (2017).
8. A. Oshkour, S. Pramanik, S. Shirazi, M. Mehrali, Y. Yau, N. Osman. The Scientific World J. 2014, 616804 (2014).
9. W. Sheng, D. Liu, H. Wang. Surf. Coat. Technol. 202, 2871 (2008).
10. J. Vitek. Metall. Trans. A. 18A, 154 (1987).
11. F. Weitzer, M. Naka, N. Krendelsberger, F. Stein, C. He, Y. Du, J. Schuster. Z. Anorg. Allg. Chem. 636, 982 (2010).
12. K. Ducki. J. Achievements in Mater. Manuf. Eng. 18 (1-2), 87 (2006).
13. K. Lindgren. Effects of irradiation and thermal ageing on the nanoscale chemistry of steel welds: PhD thesis. Göteborg, Sweden (2018) 71 p.
14. M. Wambach, P. Ziolkowski, E. Müller, A. Ludwig. ACS Comb. Sci. 21 (5), 362 (2019).
15. M. Yang, J. Zhu, T. Yang, J. Luan, Z. Jiao, X. Fan, B. Kuhn, X. Xiong, C. Wang, C. Liu, X. Liu. Mater. Sci. Eng. A. 745, 390 (2018).
16. F. Spiegel, D. Bardos, P. Beck. Ternary G and E silicides and germanides of transition elements. Trans. AIME. 27, 575 (1963).
17. The Open Quantum Materials Database. Webpage https://oqmd.org/materials/entry/19018.
18. H. Dong, R. Zhong, L. Liu, Z. Wang, C. Yang, Z. Luo, W. Zhang. Mater. Charact. 196, 112611 (2023).
19. R. Silva, G. Vacchi, C. Kugelmeier, I. Santos, A. Filho, D. Magalhãs, C. Afonso, V. Sordi, C. Rovere. J. Mater. Sci. Technol. 98, 123 (2022).
20. M. Nascimento, F. Gallo, F. Queiroz, M. Mendes, C. Eckstein, L. Nogueira Jr., I. May, G. Pereira, L. Almeida. J. Mater. Res. Technol. 22, 382 (2023).
21. C. Wang, X. Huang, M. Yang, J. Han, Z. Yao, T. Yang, Y. Zhao, W. Liu, L. Huang, C. Huan, S. Pan, Z. Li, C. Wang, Y. Chen, C. Yang, X. Liu. Mater. & Design. 222, 111021 (2022).
22. X. Liu, C. Liu, J. Wu, X. Zhang, X. Zhu, J. Wang. Mater. Sci. Eng. A. 832, 142421 (2022).
23. S. Kondrat’ev, Yu. Belikova, M. Fuks, M. Frolov, S. Petrov. Metal Sci. Heat Treat. 64 (1-2), 34 (2022).
24. Y. Chen, D. Wu, D. Li, Y. Li, S. Lu. Acta Met. Sin. 36, 637 (2023).
25. M. Yang, C. Huang, J. Han, H. Wu, Y. Zhao, T. Yang, S. Jin, C. Wang, Z. Li, R. Shu, C. Wang, H. Lu, G. Sha, X. Liu. J. Mater. Sci. Technol. 136, 180 (2023).
26. N. Cautaerts, E. Rauch, J. Jeong, G. Dehm, C. Liebscher. Scr. Mater. 201, 113930 (2021).
27. D. King, M. Yang, T. Whiting, X. Liu, M. Wenman. Acta Mater. 183, 350 (2020).
28. N. Vaché, P. Steyer, C. Duret-Thual, M. Perez, T. Douillard, E. Rauch, M. Véron, G. Renou, F. Dupoiron, C. Augustin, S. Cazottes. Materialia. 9, 100593 (2020).
29. A. Jacob, C. Domain, G. Adjanor, P. Todeschini, E. Povoden-Karadeniz. J. Nucl. Mater. 533, 152091 (2020).
30. X. Liu, W. Lu, X. Zhang. Acta Mater. 183, 51 (2020).
31. Y. Chen, X. Dai, X. Chen, B. Yang. Mater. Charact. 149, 74 (2019).
32. R. Badyka, G. Monnet, S. Saillet, C. Domain, C. Pareige. J. Nucl. Mater. 514, 266 (2019).
33. M. Abbasi, I. Park, Y. Ro, Y. Ji, R. Ayer, J. Shim. Mater. Charact. 148, 297 (2019).
34. S. Ahmed, J. Greedan, C. Boyer, M. Niewczas. Inorg. Chem. 57 (22), 14144 (2018).
35. G. Rixecker, R. Haberkorn. J. Alloys Compd. 316, 203 (2001).
36. E. Olevsky, A. Bokov, G. Boltachev, N. Volkov, S. Zayats, A. Ilyina, A. Nozdrin, S. Paranin. Acta Mechanica. 224 (12), 3177 (2013).
37. E. Shelekhov, T. Sviridova. Met. Sci. Heat Treat. 42, 309 (2000).
38. E. Illekova, J. Harnuskova, R. Florek, F. Simancık, I. Matko, P. Svec Sr. J. Therm. Anal. Calorim. 105, 583 (2011).
39. JMicroVision 1.2.7 software Webpage https://jmicrovision.github.io/v127/install127.htm.
40. Z. Zhang, P. Hellström, M. Östling, S. Zhang, J. Lu. Appl. Phys. Lett. 88, 043104 (2006).
41. G. Samsonov, I. Vinitskii. Handbook of refractory compounds. New York (1980) 555 p.
42. W. Williams. Int. J. Refract. Met. Hard Mater. 17, 21 (1999).
45. Y. Kobayashi, S. Tada, H. Mizoguchi. Nanoscale. 13 (39), 16533 (2021).

Другие статьи на эту тему

Финансирование на английском языке

1. Ministry of Science and Higher Education of the Russian Federation - BB_2021_121030100003-7
2. Ministry of Science and Higher Education of the Russian Federation - 122011200363-9