Hardening of powdered tin-nickel-chromium bronze by mechanical alloying of the initial charge

S.S. Belyaeva ORCID logo , A.A. Khlybov ORCID logo , E.S. Belyaev ORCID logo , T.M. Kolosova, D.A. Ryabov ORCID logo , P.S. Afanasyeva, I.M. Shishkina, K.S. Smetanin show affiliations and emails
Received 28 March 2023; Accepted 16 May 2023;
Citation: S.S. Belyaeva, A.A. Khlybov, E.S. Belyaev, T.M. Kolosova, D.A. Ryabov, P.S. Afanasyeva, I.M. Shishkina, K.S. Smetanin. Hardening of powdered tin-nickel-chromium bronze by mechanical alloying of the initial charge. Lett. Mater., 2023, 13(3) 225-231
BibTex   https://doi.org/10.22226/2410-3535-2023-3-225-231

Abstract

The microstructure of samples that were formed after mill processing has differences from the structure of samples that were formed after the charge mixing in the form of a noticeable grinding of the excess ɛ-phase, increased chromium content both in the α-solid solution and excess ɛ-phase (by 34%), as well as crushing of metallic chromium inclusions.This paper compares the mechanical characteristics of a pore-free powdered bronze produced from a mechanically mixed charge with a bronze of a similar composition produced from a charge processed in a planetary mill. It is shown that the mechanical characteristics of the bronze produced from the planetary mill processed charge are greater. In particular, Rockwell hardness A and yield strength were increased by 9.1 and 28.6 %, respectively. However, the ductility characteristics of the bronze slightly decreased, in particular, the elongation and contraction were reduced by 4.3 and 12.7 %, respectively. The hardening mechanism based on the solid solution chromium content during heat treatment (sintering, hot recompaction) is proposed, and chromium transport into the solid solution by means of the tin content is also considered. The hardening effect of planetary mill charge processing comes from the increased chromium content, the alloy grain refinement, and the formation of a more supportive, uniform alloy microstructure.

References (55)

1. I. M. El-Galy, B. I. Saleh, M. H. Ahmed. SN Appl. Sci. 1, 1378 (2019). Crossref
2. Y. Li, Z. Feng, L. Hao, L. Huang, C. Xin, Y. Wang, E. Bilotti, K. Essa, H. Zhang, Z. Li, F. Yan, T. Peijs. Adv. Mater. Technol. 5 (6), 1900981 (2020). Crossref
3. M. M. Gasik. Comput. Mater. Sci. 13 (1-3), 42 (1998). Crossref
4. G. C. Ma, J. L. Fan, H. R. Gong. Comput. Mater. Sci. 152, 165 (2018). Crossref
5. Y. Wang, S. Liang, J. Ren. Mater. Sci. Eng. A, 534, 542 (2012). Crossref
6. J. Cao, J. Liu, C. He, S. Li, Z. Hao, X. Xue. Mater. Des. 164, 107536 (2019). Crossref
7. F. T. N. Vüllers, R. Spolenak. Acta Mater. 99, 213 (2015). Crossref
8. C. Hou, X. Song, F. Tang, Y. Li, L. Cao, J. Wang, Z. Nie. NPG Asia Mater. 11, 74 (2019). Crossref
9. E. S. Belyaev, V. K. Sorokin, N. V. Makarov, M. A. Kravchenko. Theor. Appl. Sci. 2 (46), 155 (2017). Crossref
10. E. S. Belyaev, N. V. Makarov, M. A. Kravchenko. Theor. Appl. Sci. 3 (47), 77 (2017). Crossref
11. Y. Li, J. Zhang, G. Luo, Y. Sun, Q. Shen, L. Zhang. J. Mater. Res. Technol. 10, 121 (2021). Crossref
12. K. C. Nnakwo. J. King Saud Univ. Sci. 31 (4), 844 (2019). Crossref
13. B. Gowon, K. S. Mohammed, S. B. Jamaludin, Z. Hussain, A. D. Aminu, Y. A. Lawal, P. Evarastics. Appl. Mech. Mater. Vol. 815, 94 (2015). Crossref
14. C. Artini, M. L. Muolo, A. Passerone. J. Mater. Sci. 47, 3252 (2012). Crossref
15. E. Bączek, J. Konstanty, A. Romański, M. Podsiadło, J. Cyboroń. J. Mater. Eng. Perform. 27, 1475 (2018). Crossref
16. X. Zhao, L. Duan. Metals. 8 (5), 307 (2018). Crossref
17. V. K. Sorokin, T. M. Kolosova, S. V. Kostromin, E. S. Belyaev. Modern High Technologies. 2, 96 (2018). (in Russian) [В. К. Сорокин, Т. М. Колосова, С. В. Костромин, Е. С. Беляев. Современные наукоемкие технологии. 2, 96 (2018)]. Crossref
18. W. Gierlotka, S. W. Chen, S. K. Lin. J. Mater. Res. 22, 3158 (2007). Crossref
19. S. Fürtauer, D. Li, D. Cupid, H. Flandorfer. Intermetallics, 34, 142 (2013). Crossref
20. A. E. Nassef, A. I. Alateyah, M. A. El-Hadek, W. H. El-Garaihy. Adv. Mater. Lett. 8 (6), 717 (2017). Crossref
21. V. Vuorinen, T. Laurila, T. Mattila, E. Heikinheimo, J. K. Kivilahti. J. Electron. Mater. 36, 1355 (2007). Crossref
22. C. Schmetterer, H. Flandorfer, Ch. Luef, A. Kodentsov, H. Ipser. J. Electron. Mater. 38, 10 (2009). Crossref
23. L. Bertini, F. Bucchi, F. Frendo, R. Valentini. Metals. 8 (11), 888 (2018). Crossref
24. S. W. Chen, S. H. Wu, S. W. Lee. J. Electron. Mater. 32, 1188 (2003). Crossref
25. Q. X. Yu, X. N. Li, K. R. Wei, Z. M. Li, Y. H. Zheng, N. J. Li, X. T. Cheng, C. Y. Wang, Q. Wang, C. Dong. Mater. Des. 167, 107641 (2019). Crossref
26. D. J. Chakrabarti, D. E. Laughlin. Bull. Alloy Phase Diagr. 5, 59 (1984). Crossref
27. H. Okamoto. JPE. 18, 220 (1997). Crossref
28. I. S. Batra, G. Dey, U. D. Kulkarni, S. Banerjee. J. Nucl. Mater. 299, 91 (2001). Crossref
29. J. Zhang, X. Cui, M. Jiankai, Y. Wang. Mater. Sci. Pol. 34 (1), 142 (2016). Crossref
30. D. Liang, X. Mi, L. Peng, H. Xie, G. Huang, Z. Yang. Materials. 13 (3), 732 (2020). Crossref
31. J. Li, H. Ding, B. Li, W. Gao, J. Bai, G. Sha. Mater. Sci. Eng. A. 802, 140628 (2021). Crossref
32. A. Olofinjana, K. S. Tan. AJSDT. 26, 11 (2017). Crossref
33. H. Xiong, Y. Ma, H. Zhang, L. Chen. Metals. 12 (9), 1406 (2022). Crossref
34. Y. Zhu, J. Liao, H. Chen, H. Wang, B. Yang. Mater. Res. Express. 7 (4), 046501 (2020). Crossref
35. D. A. Aksenov, R. N. Asfandiyarov, G. I. Raab, E. I. Fakhretdinova, M. A. Shishkunova. Metals. 11 (11), 1795 (2021). Crossref
36. R. K. Islamgaliev, K. M. Nesterov, J. Bourgon, Y. Champion, R. Valiev. J. Appl. Phys. 115, 194301 (2014). Crossref
37. A. A. Khlybov, T. M. Kolosova, E. S. Belyaev, S. S. Belyaeva. Bulletin of Kalashnikov ISTU. 23 (1), 6 (2020). (in Russian) [А. А. Хлыбов, Т. М. Колосова, Е. С. Беляев, С. С. Беляева. Вестник ИжГТУ имени М. Т. Калашникова. 23 (1), 6 (2020).]. Crossref
38. H. J. Ryu, H. K. Baik, S. H. Hong. J. Mater. Sci. 35, 3641 (2000). Crossref
39. D. V. Shangina, N. R. Bochvar, S. V. Dobatkin. Mater. Sci. Forum. 667 - 669, 301 (2010). Crossref
40. C. C. Koch, J. D. Whittenberger. Intermetallics, 4 (5), 339 (1996). Crossref
41. L. Lu, M. O. Lai. Mechanical Alloying. Kluwer Academic Publishers (1998), pp. 11 - 21.
42. P. A. Vityaz, V. I. Zhornik, S. A. Kovaleva, T. F. Grigorieva. Vestnik of Vitebsk State Technological University, Chemical Technology and Ecology. 1 (26), 110 (2014). (in Russian) [П. А. Витязь, В. И. Жорник, С. А. Ковалева, Т. Ф. Григорьева. Вестник Витебского государственного технологического университета, Химическая технология и экология. 1 (26), 110 (2014).].
43. C. Suryanarayana, E. Ivanov. (2010). Mechanical Alloying for Advanced Materials. Powder Materials: Current Research and Industrial Practices III (ed. by F. D. S. Marquis). John Wiley & Sons (2010) pp. 169 - 178. Crossref
44. B. F. O. Costa, G. Le Caër, S. Begin-Colin, P. J. Mendes, N. Ayres de Campos. J. Mater. Process. Technol. 92 - 93, 395 (1999). Crossref
45. K. B. Gerasimov, S. V. Mytnichenko, S. V. Pavlov, V. A. Chernov, S. G. Nikitenko. J. Alloys Compd. 252 (1-2), 179 (1997). Crossref
46. Q. Zhao, Z. Shao, C. Liu, M. Jiang, X. Li, R. Zevenhoven, H. Saxén. J. Alloys Compd. 607, 118 (2014). Crossref
47. Q. Zhao, Z. Shao, Q. Leng, X. Zhang, C. Liu, B. Li, M. Jiang. Powder Technol. 321, 326 (2017). Crossref
48. B. Gowon, K. Mohammed, S. Jamaluddin, Z. Hussain, P. Evarastics. Open J. Met. 5, 19 (2015). Crossref
49. A. V. Ozolin, E. G. Sokolov. Metal Working and Material Science. 24 (1), 48 (2022). (in Russian) [А. В. Озолин, Е. Г. Соколов. Обработка металлов (технология, оборудование, инструменты). 24 (1), 48 (2022).]. Crossref
50. X. Shang, X. Wang, S. Chen. Materials. 12 (8), 1224 (2019). Crossref
51. H. M. Henao, C. S. Chu, J. P. Solis, K. Nogita. Metall. Mater. Trans. B 50, 502 (2019). Crossref
52. W. Wunderlich, Y. Motoyama, Y. Sugisawa, Y. Matsumura. J. Electron. Mater. 40, 583 (2011). Crossref
53. M. Venkatraman, J. P. Neumann. JPE. 9, 159 (1988). Crossref
54. H. Okamoto. J. Phs. Eqil. Diff. 29, 297 (2008). Crossref
55. N. Saunders, A. P. Miodownik. Bull. Alloy Phase Diagr. 11, 278 (1990). Crossref

Similar papers

Funding

1. Ministry of Education and Science of the Russian Federation - the State University Support Program “Priority 2030”