Structure of Al-Fe alloys synthesized from elemental powders by intensive plastic deformation under high pressure

A.V. Dobromyslov, N.I. Taluts, V.P. Pilyugin show affiliations and emails
Received  21 November 2014; Accepted  26 December 2014
Citation: A.V. Dobromyslov, N.I. Taluts, V.P. Pilyugin. Structure of Al-Fe alloys synthesized from elemental powders by intensive plastic deformation under high pressure. Lett. Mater., 2014, 4(4) 253-256
BibTex   https://doi.org/10.22226/2410-3535-2014-4-253-256

Abstract

The phase structure and structural evolution of the binary Al-Fe alloys received from mixture of elemental powders by intensive plastic deformation under pressure is studied. It is revealed that solubility of iron in aluminum at a room tem-perature increases to 1 ат. %. It is established that the size of grains depends on the metal contents in the initial mixture and the degree of plastic deformation. Regions with amor-phous sites are observed in alloys at the iron content > 10 at.%. It is shown that the shape of a surface of fracture finds a certain causal relation with the iron content in the synthe-sized alloy.

References (20)

1. D. K. Mukhopadhyay, C. Suryanarayana, F. H. (Sam)Froes. Metall. and Mater. Trans. A26, 1939 (1995).
2. F. Cardellini, V. Contini, R. Gupta, G. Mazzone, A. Montone, A. Perin, G. Pricipi. J. Mater. Sci. 33, 2519 (1998).
3. I. S. Ahn, K-C. Jung, S. S. Kim, Y. Y. Kim. Metals andmaterials. 5, 619 (1999).
4. R. A. Dunlap, J. R. Dahn, D. A. Eelman, G. R. MacKay.Hyperfine Interactions. 116, 117 (1998).
5. L. Jinxin, P. Hua, J. Wei, Z. Lijing, T. Meikuang. J. ofMater. Sci. Letters. 18, 1743 (1999).
6. M. M. Rajath Hegde, A. O. Surendranathan. PowderMetall. Met. Ceram. 48, 641 (2009).
7. S. S. Nayak, M. Wollgarte, J. Banhart, S. K. Pabi, B. S. Murty. Mater. Sci. Eng. A527, 2370 (2010).
8. S. Zhou, W. Wang. Rare metals. 29, 220 (2010).
9. M. Tavaoosi, F. Karimzadeh, M. H. Enayati, S.-H. Joo, H. S. Kim. J. Mater. Sci. 46, 7633 (2011).
10. E. P. Yelsukov, A. L. Ul’yanov, A. V. Protasov, D. A. Kolodkin. Phys. Met. Metallogr. 113, 635(2012).
11. E. P. Elsukov, A. V. Protasov, A. L. Uluanov, D. A. Kolodkin. Phys. Met. Metallogr. 114, 148(2013).
12. T. Bachaga, R. Daly, L. Escoda, J. J. Suñol, M. Khitouni. Metall and Mater. Trans. A44, 4718(2013).
13. B. Abar, M. Gogebakan, S. Ozcan, S. Kerli. J. ofKorean Physical Society. 65, 664 (2014).
14. A. V. Dobromyslov, R. V. Churbaev, V. A. Elkin, T. L. Trenogina. Scripta Mater. 41, 1015 (1999).
15. A. V. Dobromyslov, R. V. Churbaev, V. A. Elkin.Phys. Met. Metallogr. 87, 140 (1999).
16. A. V. Dobromyslov, E. K. Dolgikh, T. L. Trenogina, R. V. Churbaev. Russian metallurgy (Metally). 5, 43(2005).
17. A. V. Dobromyslov, R. V. Churbaev. Int. J. Mod. Phys.B24, 722 (2010).
18. C. Xu, Z. Horita, T. G. Langdon. Mater Trans. 51, 2(2010).
19. K. Edalati. Z. Horita, H. Fujiwara, K. Ameyama.Metall and Mater. Trans. 41 A, 3308 (2010).
20. J. M. Cubero-Sessin, Z. Horita. Metall and Mater.Trans. A43, 5182 (2012).

Cited by (1)

1.
A. Acar, R. Mutlu, D. Kaya, A. Ekşi, A. Ekicibil. Journal of Molecular Structure. 1232, 130031 (2021). Crossref

Similar papers