Study of the structure and properties of Al-Si alloy irradiated by electron-ion-plasma

Y.A. Shliarova ORCID logo , V.V. Shlyarov, D.V. Zaguliaev, Y.F. Ivanov, V.E. Gromov show affiliations and emails
Received 05 March 2023; Accepted 31 May 2023;
Citation: Y.A. Shliarova, V.V. Shlyarov, D.V. Zaguliaev, Y.F. Ivanov, V.E. Gromov. Study of the structure and properties of Al-Si alloy irradiated by electron-ion-plasma. Lett. Mater., 2023, 13(3) 219-224
BibTex   https://doi.org/10.22226/2410-3535-2023-3-219-224

Abstract

The paper describes the two-stage modification of the surface layer of  Al-20%Si alloy that combines electroexplosive alloying by an Al-Y2O3 system with subsequent irradiation by pulsed electron beam. Study of the structure and properties of the modified layers of the material under study by the methods of modern physical materials science.The paper describes a two-stage modification of the surface layer of the hypereutectic Al-20 %Si alloy that combines electroexplosive alloying by the Al-Y2O3 system with subsequent irradiation by a pulsed electron beam. It is shown that, irrespective of the modification mode, a multilayer structure is formed consisting of the following layers: the surface layer and the intermediate layer. The surface layer is a multiphase material, the thickness of which varies within 1 µm. The thickness of the intermediate layer varies within 40 µm. The two-stage treatment, which combines electroexplosive alloying with subsequent pulsed e-beam irradiation at an electron beam energy density of 25 J / cm2, is accompanied by an increase in the wear resistance of the modified samples by 7.9 times and a decrease in the friction coefficient by 1.7 times relative to silumin in the initial state. It was found that an increase in the energy density of the electron beam up to 35 J / cm2 is accompanied by an increase (relative to the samples modified at Es = 25 J / cm2) in the silumin wear parameter by 2.1 times, friction coefficient by 1.13 times, remaining, however, higher than the indicated characteristics of silumin in the initial state.

References (28)

1. A. Blutmager, M. Varga, U. Cihak-Bayr, W. Friesenbichler, P. H. Mayrhofer. Vacuum. 192, 110482 (2021). Crossref
2. H. Jiang, Z. Ren, Y. Yi, L. He, S. Yuan. J. Mater. Res. Technol. 14, 1065 (2021). Crossref
3. Z. Liu, H. Zhang, Z. Yan, P. Dong. Mater. Lett. 306, 130864 (2022). Crossref
4. J. Zhou, X. Han, H. Li, S. Liu, J. Yi. Mater. Des. 210, 110092 (2021). Crossref
5. A. Kagramanian, P. Stankevich, D. Aulin, A. Basov. Procedia Comput. Sci. 149, 264 (2019). Crossref
6. B. Denkena, M.-A. Dittrich, Y. Liu, M. Theuer. Procedia Manuf. 21, 259 (2018). Crossref
7. C. Fanghänel, A. Rautenstrauch, C. Symmank, J. Katzenberger, M. Putz, V. Kräusel, U. Götze, B. Awiszus. Procedia CIRP. 26, 595 (2015). Crossref
8. S. Tutunchilar, M. K. Besharati Givi, M. Haghpanahi, P. Asadi. Materials Science and Engineering: A. 534, 557 (2012). Crossref
9. A. M. A. Mohamed, A. M. Samuel, F. H. Samuel, H. W. Doty. Materials & Design. 30, 3943 (2009). Crossref
10. Q. Li, T. Xia, Y. Lan, P. Li, L. Fan. Materials Science and Engineering: A. 588, 97 (2013). Crossref
11. M. Chen, X. Meng-Burany, T. A. Perry, A. T. Alpas. Acta Materialia. 56 (19), 5605 (2008). Crossref
12. M. Chen, A. T. Alpas. Wear. 265 (1-2), 186 (2008). Crossref
13. F. Cao, Y. Jia, K. G. Prashanth, P. Ma, J. Liu, S. Scudino, F. Huang, J. Eckert, J. Sun. Materials & Design. 74, 150 (2015). Crossref
14. Q. Li, T. Xia, Y. Lan, W. Zhao, L. Fan, P. Li. Journal of Alloys and Compounds. 577, 232 (2013). Crossref
15. D. Zaguliaev, V. Gromov, Yu. Rubannikova, S. Konovalov, Yu. Ivanov, D. Romanov, A. Semin. Surface and Coatings Technology. 383, 125246 (2020). Crossref
16. S. Konovalov, V. Gromov, Yu. Ivanov. Material Research Express. 5, 116520 (2018). Crossref
17. D. A. Romanov, V. E. Gromov, et al. Advances in Physical Sciences. 16, 119 (2015).
18. S. Konovalov, V. Gromov, D. Zaguliyaev, Yu. Ivanov, A. Semin, J. Rubannikova. Archives of foundry engineering. 19 (2), 79 (2019). Crossref
19. Yu. Ivanov, V. Gromov, D. Zagulyaev, A. Glezer, R. Sundeev, Yu. Rubannikova, Al. Semin. Materials Letters. 253, 55 (2019). Crossref
20. Y. Hao, B. Gao, G. F. Tu, H. Cao, S. Z. Hao, C. Dong. Appl. Surf. Sci. 258, 2052 (2012). Crossref
21. B. Gao, Y. Hao, Z. Wang, G. F. Tu, W. X. Shi, S. W. Li, S. Z. Hao, C. Dong. Trans. Mater. Heat Treatment. 3, 115 (2010).
22. B. Gao, Y. Hao, W. F. Zhuang, G. F. Tu, W. X. Shi, S. W. Li, S. Z. Hao, C. Dong, M. C. Li. Phys. Proc. 18, 187 (2011). Crossref
23. Y. Hao, B. Gao, G. F. Tu, S. W. Li, C. Dong. Nucl. Instrum. Methods Phys. Res. B. 269, 1499 (2011). Crossref
24. Y. Hao, B. Gao, G. F. Tu, S. W. Li, S. Z. Hao, C. Dong. Appl. Surf. Sci. 257, 3913 (2011). Crossref
25. D. Zagulyaev, S. Konovalov, V. Gromov, A. Melnikov, V. Shlyarov. Bulletin of the polish academy of sciences technical sciences. 67 (1), 1 (2019).
26. S. Konovalov, V. Gromov, D. Zaguliyaev, Y. Ivanov, A. Semin, J. Rubannikova. Archives of foundry engineering. 19 (2), 79 (2019).
27. D. Zaguliaev, Yu. Ivanov, S. Konovalov, A. Abaturova, V. Gromov, Yu. Rubannikova, A. Semin. Materials Research. 23 (2), e20200057 (2020). Crossref
28. D. Zaguliaev, S. Konovalov, Yu. Ivanov, V. Gromov. Applied Surface Science. 498, 143767 (2019). Crossref

Similar papers

Funding

1. Russian Science Foundation - 19-79-10059