Fabrication of thin-walled iridium tubular articles by radial magnetic pulsed compaction and sintering of nanopowder

V.I. Krutikov ORCID logo , S.N. Paranin, A.V. Spirin, A.S. Kazakov, E.P. Aleksandrov show affiliations and emails
Received 28 February 2019; Accepted 23 May 2019;
Citation: V.I. Krutikov, S.N. Paranin, A.V. Spirin, A.S. Kazakov, E.P. Aleksandrov. Fabrication of thin-walled iridium tubular articles by radial magnetic pulsed compaction and sintering of nanopowder. Lett. Mater., 2019, 9(3) 334-338
BibTex   https://doi.org/10.22226/2410-3535-2019-3-334-338

Abstract

Magnetic pulsed compaction of nanopowder followed by sintering yielded thin-walled tubular iridium articles with a crystallite size of 180 nm and a relative density of 98%.Iridium is rather difficult to process due to its brittleness and sensitivity to impurities. It is better treated while it is clean and fine-grained. Therefore, it should be promising to use fine powders. At the same time, the pressing and sintering of iridium nanopowders has not been studied well. This paper describes a method for manufacturing thin-walled iridium tubes using powder technology. Iridium powder of 99.997 % purity with an average particle size of 42 nm (BET) was obtained by the electrolysis of molten salts. It was subjected to radial magnetic pulsed compaction in copper shell, which was subsequently chemically removed. The resulting pressure on the powder here strongly depends on the parameters of the magnetic field pulse and other initial conditions, such as the properties of the shell, the thickness of the charge and the rheological properties of the powder. Therefore, the properties of green and sintered samples were investigated depending on the amplitude of the magnetic pressure, without changing the other parameters. Green bodies with a relative density of up to 50 % were obtained with an amplitude of magnetic pressure of 85 –190 MPa. The green density slightly increased with increasing magnetic pressure. Sintering at 1000°C in a hydrogen atmosphere yielded thin-walled tubes with a grain size of 0.3 μm and a density of up to 22.3 g / cm3, close to the theoretical density of iridium, 22.56 g / cm3. The sintered density was insensitive to the green density in the studied range. Solid sintered tubes were obtained by an amplitude of magnetic pressure between 85 and 122 MPa.

References (21)

1. A. V. Ermakov, S. S. Naboichenko. Russ J Non-Ferr Met+. 53 (4), 292 (2012). Crossref
2. E. K. Ohriner. Platin. Met. Rev. 52 (3), 186 (2008). Crossref
3. L. B. Hunt. Platin. Met. Rev. 31 (1), 32 (1987).
4. E. K. Ohriner. J. Alloys Compd. 461 (1-2), 633 (2008). Crossref
5. R. L. Heestand, E. K. Ohriner. J. Met. 40 (7), A63 (1988).
6. N. I. Timofeev, A. V. Ermakov, V. A. Dmitriev, P. E. Panfilov. Osnovy metallurgii i tekhnologii proizvodstva izdeliy iz iridiya. Yekaterinburg, Ural Branch of RAS (1996) p. 105 -109. (in Russian) [Н. И. Тимофеев, А. В. Ермаков, В. А. Дмитриев, П. Е. Панфилов. Основы металлургии и технологии производства изделий из иридия. Екатеринбург, УрО РАН (1996) c. 105 -109.].
7. E. P. George, C. G. McKamey, E. K. Ohriner, E. H. Lee. Mater. Sci. Eng. A. 319-321, 466 (2001). Crossref
8. P. Panfilov, A. Ermakov, O. V. Antonova, V. P. Pilyugin. Platinum Metals Rev. 53 (3), 138 (2009). Crossref
9. B. Cockayne. Platin. Met. Rev. 18 (3), 86 (1974).
10. M. Ushio, K. Kusumoto, F. Matsuda. International Trends in Welding Science and Technology. Gatlinburg, Tennessee, U. S. A. (1993) p. 365.
11. C. Huang, Y. Yamabe-Mitarai, H. Harada, J. Mater. Eng. Perform. 11 (1), 32 (2002). Crossref
12. C. Xiang, Y. Ge, H. Liu, Y. Huang, H. Tang. Rare Metal Mat Eng. 38 (7), 1132 (2009). Crossref
13. D. Lupton, M. Hörmann. Galvanotechnik. 87 (1), 72 (1996).
14. Patent RF № 2633203, 11.10.2017. (in Russian) [Патент РФ № 2633203, 11.10.2017.].
15. S. N. Paranin, V. V. Ivanov, A. V. Nikonov, A. V. Spirin, V. R. Khrustov, S. Yu. Ivin, A. S. Kaygorodov, P. N. Korolev. Adv Sci Tech. 45, 899 (2006). Crossref
16. G. Sh. Boltachev, K. A. Nagayev, S. N. Paranin, A. V. Spirin, N. B. Volkov. Magnetic Pulsed Compaction of Nanosized Powders. New York, Nova Science Publishers Inc. (2010) 86 p.
17. N. I. Timofeev, O. Yu. Afanasyev, L. D. Gorbatova, E. P. Aleksandrov, A. V. Vasilyev, A. S. Kazakov. Proceedings of XIX International Chernyaev Conference on Chemistry, Analytics, and Technology of Platinum Metals. Part 2. Novosibirsk (2010) p. 79. (in Russian) [Н. И. Тимофеев, О. Ю. Афанасьев, Л. Д. Горбатова, Е. П. Александров, А. В. Васильев, А. С. Казаков. Сборник трудов XIX Международной Черняевской конференции по химии, аналитике и технологии платиновых металлов. Ч. 2. Новосибирск (2010) с. 79.].
18. International Centre for Diffraction Data (ICDD), PDF-2 database. Pattern 00-006-0598.
19. US Patent No. 3346914, 17.10.1967.
20. V. A. Mironov. Magnitno-impul'snoye pressovaniye poroshkov. Riga, Zinatne (1980) 196 p. (in Russian) [В. А. Миронов. Магнитно-импульсное прессование порошков. Рига, Зинатне (1980) 196 с.].
21. Website: characteristics of RVU-47 vacuum switches (manufacturer is LLC VEI-AVIS) http://www.vei-avis.ru / en/rvu-47. html.

Similar papers