Formation of electric spark WC-Co coatings with modifying Cr2O3 additives

A.A. Burkov, L.A. Konevtsov ORCID logo , V.K. Khe show affiliations and emails
Received: 14 April 2022; Revised: 29 June 2022; Accepted: 02 August 2022
Citation: A.A. Burkov, L.A. Konevtsov, V.K. Khe. Formation of electric spark WC-Co coatings with modifying Cr2O3 additives. Lett. Mater., 2022, 12(3) 237-242


The energy dispersive analysis showed an increase in the chromium concentration in the coating with an increase in the chromium oxide content in the electrode materials. With an increase in the concentration of Cr2O3 in the coatings, the friction coefficient and wear rate were decreased.Tungsten carbide coatings are widely used on steels due to their high hardness and wear resistance, but they have low high-temperature oxidation resistance and therefore need to be modified with oxidation resistance compounds. Electrode materials based on WC-8 %Co with addition of 1, 3 and 6 wt.% Cr2O3 were prepared by powder metallurgy for the deposition of electric spark coatings on steel 1035. An increase in the content of Cr2O3 in electrodes led to a rise in the thickness of the coatings from 18.2 to 28.3 µm. The tungsten semicarbide phase dominated in the structure of the coatings. The concentration of chromium in the coatings is a function of it in the electrodes. Polarization tests of coated samples showed an increase in the corrosion potential and a decrease in the corrosion current density with an increase of Cr2O3 concentration in WC-Co electrodes. The Cr2O3 additions into the WC-8 %Co electrode allow increasing the oxidation resistance of coatings at a temperature of 700°C. The coating microhardness increased monotonically from 9.6 to 13 GPa, the friction coefficient decreased from 0.7 to 0.58, and wear rate decreased with increasing Cr2O3 content. Electric spark deposition of the WC-8 %Co electrode with addition of Cr2O3 on steel 1035 allows increasing its wear resistance up to 14 times.

References (21)

1. R. Khuengpukheiw, А. Wisitsoraat, C. Saikaew. Wear. 484, 203699 (2021). Crossref
2. J. Cheng et al. Journal of Alloys and Compounds. 831, 154769 (2020). Crossref
3. M. Aristizabal et al. Corrosion Science. 53, 2754 (2011). Crossref
4. S. Hui, S. Tianyuan, K. Dejun. International Journal of Applied Ceramic Technology. 15, 1229 (2018). Crossref
5. F. Ghadami, M. H. Sohi, S. Ghadami. Surface and Coatings Technology. 261, 289 (2015). Crossref
6. M. Erfanmanesh et al. Ceramics International. 44, 12805 (2018). Crossref
7. L. Lind et al. Estonian Journal of Engineering. 18, 193 (2012). Crossref
8. M. Y. Noordin et al. Advanced Materials Research. 576, 626 (2012). Crossref
9. A. A. Burkov, S. A. Pyachin. J. of Materi Eng and Perform. 23, 2034 (2014). Crossref
10. N. Radek et al. Materials. 14, 538 (2021). Crossref
11. S. V. Nikolenko. Russian Engineering Research. 31, 556 (2011). Crossref
12. M. Scendo, K. Szczerba. Int. J. Electrochem. Sci. 14, 1009 (2019). Crossref
13. S. M. Hashemi, N. Parvin, Z. Valefi. Journal of Thermal Spray Technology. 28, 544 (2019). Crossref
14. M. I. Dvornik, E. A. Mikhailenko. Russian Journal of Non-Ferrous Metals, 62 (1), 97 (2021). (in Russian) [М. И. Дворник, Е. А. Михайленко. Известия высших учебных заведений. Порошковая металлургия и функциональные покрытия. 3, 4 (2020).]. Crossref
15. S. V. Nikolenko, S. A. Pyachin, A. A. Burkov. Russian Journal of Non-Ferrous Metals. 52, 56 (2011). Crossref
16. P. Zamani, Z. Valefi, K. Jafarzadeh. Ceramics International. 48, 1574 (2022). Crossref
17. A. Rasooli, M. S. Safavi, M. K. Hokmabad. Ceramics International. 44, 6466 (2018). Crossref
18. A. A. Burkov, M. A. Kulik, V. O. Krutikova. Letters on Materials. 11, 175 (2021). (in Russian) [А. А. Бурков, М. А. Кулик, В. О. Крутикова. Письма о материалах. 11 (2), 175 (2021).]. Crossref
19. A. A. Burkov, M. A. Kulik. Letters on Materials. 11, 304 (2021). (in Russian) [А. А. Бурков, М. А. Кулик. Письма о материалах. 11 (3), 304 (2021).]. Crossref
20. M. Gubisch et al. Tribology and Interface Engineering Series. Elsevier. 48, 409 (2005). Crossref
21. J. F. Achard. Journal of Applied Physics. 24, 981 (1953). Crossref

Similar papers


1. state task of the KhFIC IM FEB RAS - subject number FWUW-2022-0006