Structure and corrosion behaviour of CrxAl(Si)yC coatings fabricated by the vacuum arc discharge technique

A.P. Rubshtein ORCID logo , A.B. Vladimirov, S.A. Plotnikov, V.B. Vykhodets, T.E. Kurennykh show affiliations and emails
Received 04 March 2022; Accepted 25 April 2022;
Citation: A.P. Rubshtein, A.B. Vladimirov, S.A. Plotnikov, V.B. Vykhodets, T.E. Kurennykh. Structure and corrosion behaviour of CrxAl(Si)yC coatings fabricated by the vacuum arc discharge technique. Lett. Mater., 2022, 12(2) 121-125
BibTex   https://doi.org/10.22226/2410-3535-2022-2-121-125

Abstract

CrxAl(Si)yC with a thickness of 3800 nm was deposited by PVD technique
Al is chemical bonded with silicon, Si – with carbon and aluminum.
Melting and crystallization of Al-Si system reduce the coating protective propertiesThe composition, structure and corrosion behaviour of CrxAly(Si)C coatings fabricated by the arc discharge techniques using Cr-Al-Si and graphite cathodes were studied. X-ray photoelectron spectroscopy, X-ray energy-dispersive spectroscopy, nuclear reactions, and Rutherford backscattering methods were applied to determine composition of the coating, X-ray diffraction and transmission electron microscopy — to investigate the structure of the coating. Corrosion tests were performed in an electrochemical cell in a 3.5 % NaCl solution. Depletion of the cathode surface of chromium, screening of Cr+ by C+ in plasma, and selective etching of the coating upper layers are accompanied by a decrease of Cr / (Al + Si) ratio in the coatings compared to the cathode. The carbon content (CC) in CrxAl(Si)yC, determined by XPS, EDS and NR, differs by several times. The CC measured by NR correlates with the results of Raman spectroscopy and confirms the existence of a continuous carbon matrix in CrxAly(Si)C. Cr is chemical bonded with carbon, silicon — with carbon and aluminum. The Al-Si system provides the structure feature of CrxAl(Si)yC: a network of aluminum intersects the amorphous matrix. The mechanical mismatch and weak bond between the Al structures and the amorphous matrix may be the reason for the formation of defects in the form of cracks and microchannels along the boundaries.

References (25)

1. X. C. Tang, H. J. Wang, L. Feng, L. X. Shao, C. W. Zou. Appl. Surf. Sci. 311, 758 (2014). Crossref
2. L. Cao, J. Liu, Y. Wan, J. Pu. Diam. Relat. Mater. 109, 108019 (2020). Crossref
3. V. S. Dhandapani, R. Subbiah, E. Thangavel, M. Arumugam, K. Park, Z. M. Gasem, V. Veeraragavan, D.-E. Kim. Appl. Surf. Sci. 371, 262 (2016). Crossref
4. U. Jansson, E. Lewin. Thin Solid Films. 536, 1 (2013). Crossref
5. W. Dai, A. Wang, Q. Wang. Surf. Coat. Technol. 272, 33 (2015). Crossref
6. W. Dai, X. Gao, J. Liu, Q. Wang. Diam. Relat. Mater. 70, 98 (2016). Crossref
7. Y.-C. Kuo, C.-J. Wang, J.-W. Lee. Thin Solid Films. 638, 220 (2017). Crossref
8. C. Tritremmel, R. Daniel, M. Lechthaler, P. Polcik, C. Mitterer. Thin Solid Films. 534, 403 (2013). Crossref
9. J. L. Endrino, S. Palacin, M. H. Aguirre, A. Gutierrez, F. Schafers. Acta Materialia. 55, 2129 (2007). Crossref
10. S. Veprek, R. F. Zhang, A. S. Argon. Phil. Mag. Lett. 87, 955 (2007). Crossref
11. M. Hopfeld, R. Grieseler, A. Vogel, H. Romanus, P. Schaaf. Surf. Coat. Technol. 257, 286 (2014). Crossref
12. A. P. Rubshtein, K. Gao, A. B. Vladimirov, S. A. Plotnikov, B. Zhang, J. Zhang. Surf. Coat. Technol. 377, 124912 (2019). Crossref
13. A. P. Rubshtein, A. B. Vladimirov, S. A. Plotnikov, E. G. Volkova. J. Surf. Investig.-X-RA. 15, 961 (2021). Crossref
14. A. P. Rubshtein, V. A. Zavalishin, A. B. Vladimirov, S. A. Plotnikov. J. Phys.: Conf. Ser. 1799, 012026 (2021). Crossref
15. G. A. Pribytkov, V. V. Korzhova, A. P. Savitskii. AIP Conf. Proceed. 1623, 511 (2014). Crossref
16. J. B. Reed. Electron Microprobe Analysis and Scanning Electron Microscopy in Geology. Cambridge University Press (2005). Crossref
17. T.-C. Fu, G.-W. Li. Appl. Surf. Sci. 253, 1260 (2006). Crossref
18. A. P. Rubshtein, A. B. Vladimirov, S. A. Plotnikov. Sol. Stat. Phenom. 279, 160 (2018). Crossref
19. Q. Jia, Z. Mu, X. Zhang, B. Zhang, R. Liu, K. Gao, Y. Yu, Z. Lai, J. Zhang. Mater. Today Chem. 21, 100521 (2021). Crossref
20. K. M. Jiang, D. Q. Zhao, X. Jiang, Q. Huang, L. J. Miao, H. M. Lu, Y. Li. J. Alloy Compd. 750, 560 (2018). Crossref
21. K. Nygren, M. Andersson, J. Hogstrom, W. Fredriksson, K. Edstrom, L. Nyholm, U. Jansson. Appl. Surf. Sci. 305, 143 (2014). Crossref
22. A. Tamayo, F. Rubio, M. A. Mazo, J. Rubio. Boletín de la Sociedad Española de Cerámica y Vidrio. 57, 231 (2018). Crossref
23. K. S. Chandra, D. Sarkar. Mater. Chem. Phys. 277, 125493 (2022). Crossref
24. Y. Lifshitz. Diam. Relat. Mater. 8, 1659 (1999). Crossref
25. A. P. Rubshtein, A. B. Vladimirov, S. A. Plotnikov. J. Phys.: Conf. Ser. 1281, 012065 (2019). Crossref

Similar papers

Funding

1. The research was carried out within the state assignment of Minobrnauki of Russia - theme “Function” No АААА-А19-119012990095-0