Microstructure and crystallographic structure of ferritic steel subjected to stress-corrosion cracking

V.D. Sitdikov, A.A. Nikolaev, G.V. Ivanov, A.K. Makatrov, A.V. Malinin show affiliations and emails
Received 25 November 2021; Accepted 07 February 2022;
Citation: V.D. Sitdikov , A.A. Nikolaev, G.V. Ivanov , A.K. Makatrov, A.V. Malinin. Microstructure and crystallographic structure of ferritic steel subjected to stress-corrosion cracking. Lett. Mater., 2022, 12(1) 65-70
BibTex   https://doi.org/10.22226/2410-3535-2022-1-65-70

Abstract

Microstructure and crystallographic texture evolution at SCC.The article presents the results of studies on the microstructure and crystallographic texture of ferritic steel under stress-corrosion cracking (SCC). Using scanning electron microscopy (SEM), the size and type of non-metallic inclusions, the elemental composition of corrosion products, and the cracking mode in the SCC zone were determined. As a part of X-ray diffraction (XRD) analysis, during which the shape and size of grains-crystallites, crystallographic texture, atomic displacements, the Debye-Waller factor and instrumental broadening of lines using the Caliotti function for LaB6 were taken into account, parameters of the microstructure in the SCC zone were assessed. It is shown that the SCC zone is characterized by high density of introduced edge-type dislocations, strong elastic microdistortions of the crystalline lattice and a relatively small size of coherent scattering domains (CSD). It is found that the processes of texture formation in the pipeline during SCC are characterized by a set of Cube {001}<100>, Brass {110}<11¯1>, Copper {112}<1¯11¯>, rotated copper H {001}<11¯0>, Goss {001}<110> and СН {001}<21¯0> orientations. It is shown that when approaching the zone where there are no SCC traces, orientations of Goss {001}<110>, Copper {112}<1¯11¯> and Rot G {011}<01¯1> type increase and orientations of Cube {001}<100>, H {001}<11¯0> and СН {001}<21¯0> type decrease.

References (12)

1. A. Bahadori. Oil and Gas Pipelines and Piping Systems: Design, Construction, Management, and Inspection. Elsevier Science (2016) 660 p. Crossref
2. T. Hara, H. Semba, H. Amaya. Pipe and Tube Steels for Oil and Gas Industry and Thermal Power Plant. Elsevier, Amsterdam, The Netherlands (2020).
3. M. S. Okyere. Corrosion Protection for the Oil and Gas Industry: Pipelines, Subsea Equipment, and Structures. CRC Press (2019) 186 p. Crossref
4. B. S. Ermakov, A. A. Alhimenko, N. O. Shaposhnikov, A. S. Tsvetkov, A. V. Shirokov. Lett. Mater. 10 (1), 48 (2020). (in Russian) [Б. С. Ермаков, А. А. Альхименко, Н. О. Шапошников, А. С. Цветков, А. В. Широков. Письма о материалах. 10 (1), 48 (2020).]. Crossref
5. S. Chatterjee, S. Koley, S. D. Bakshi, M. Shome. Mater. Sci. Eng. A. 708, 254 (2017). Crossref
6. D. Raabe, K. Lüucke. Mater. Sci. Technol. 9, 302 (1993). Crossref
7. D. Raabe. Steel research International. 74, 327 (2003). Crossref
8. D. Raabe, K. Lucke. Mater. Sci. Forum. 157, 597 (1994). Crossref
9. M. Holscher, D. Raabe, K. Lucke. Steel Res. Int. 62, 567 (1991). Crossref
10. O. A. Krymskaya, Yu. A. Perlovich, N. S. Morozov, V. A. Fesenko, M. G. Isaenkova, I. V. Ryakhovskikh, T. S. Yesiev. Territory of neftegaz. 2 (31), 48 (2015). (in Russian) [О. А. Крымская, Ю. А. Перлович, Н. С. Морозов, В. А. Фесенко, М. Г. Исаенкова, И. В. Ряховских, Т. С. Есиев. Территория нефтегаз. 2 (31), 48 (2015).].
11. M. Leoni, T. Confente, P. Scardi. Z. Kristallogr. Suppl. 23, 249 (2006). Crossref
12. H. E. Swanson, E. Tatge. Natl. Bur. Stand. (U. S.). Circ. 539 IV, 3 (1955).

Similar papers