Evolution of the structure of Cu-7.7 %Nb microcomposites under large plastic deformation

E.G. Valova-Zaharevskaya ORCID logo , E.N. Popova, I.L. Deryagina show affiliations and emails
Received 21 September 2023; Accepted 30 October 2023;
Citation: E.G. Valova-Zaharevskaya, E.N. Popova, I.L. Deryagina. Evolution of the structure of Cu-7.7 %Nb microcomposites under large plastic deformation. Lett. Mater., 2023, 13(4) 368-372
BibTex   https://doi.org/10.22226/2410-3535-2023-4-368-372

Abstract

In niobium filaments of the Cu-7.7%Nb composite under cold-drawing beginning from the true strain of 8.5, macrostrains are observed according to the X-ray data, which is confirmed by TEM data, which demonstrate distortions of niobium lattice and formation of partially coherent boundaries (110)Nb || (111)Cu. These macrostrains are anisotropic and higher than those in the Cu-18%Nb composites.High-strength Cu-Nb composites with high electrical conductivity were developed to protect magnetic systems from destruction under the action of Lorentz forces, but the possibilities of their application are much wider. Unique in situ composites of small diameter based on copper with a reduced niobium content of 7.7 wt.% are investigated to contribute to the development of more cost-effective high-strength composite conductors. In this work, the change of tense state in the components of the Cu-7.7 % Nb composite under cold-drawing from the true strain of 8.5 to 11.2 has been determined by X-ray diffraction analysis and transmission electron microscopy. It has been found that in niobium filaments beginning from the true strain η = 8.5, macrostrains are observed according to the X-ray data, which is confirmed by TEM data, which demonstrate distortions of niobium lattice and formation of partially coherent boundaries (110)Nb || (111)Cu. These macrostrains are anisotropic and higher than those in the Cu-18 % Nb composites. The microstrains have also been detected in niobium, which increase with increasing true strain of the Cu-7.7 % Nb composite. The results obtained will help to further determine the contribution of the Cu / Nb interfaces to the anomalous strength of this class of composite materials.

References (31)

1. F. Herlach, M. van der Burgt, I. Deckers, G. Heremans, G. Pitsi, L. Van Bockstal, S. Askenazy, R. G. Clark, H. Jones, J. Mallett. Phys. B Condens. Matter. 177, 63 (1992). Crossref
2. K. Han, V. J. Toplosky, R. Walsh, C. Swenson, B. Lesch, V. I. Pantsyrnyi. IEEE Trans. Appl. Supercond. 12, 1176 (2002). Crossref
3. J. Bevk, J. P. Harbison, J. L. Bell. J. Appl. Phys. 49, 6031 (1978). Crossref
4. P. D. Funkenbusch, T. H. Courtney. Acta Metall. 33, 913 (1985). Crossref
5. M. V. Polikarpova, P. A. Lukyanov, I. M. Abdyukhanov, V. I. Pantsyrny, A. E. Vorobyeva, N. E. Khlebova, S. V. Sudyev, A. K. Shikov, V. V. Guryev. IEEE Trans. Appl. Supercond. 24 (3), 6600604 (2014). Crossref
6. V. Pantsyrny, A. Shikov, N. Khlebova, V. Drobishev, N. Kozlenkova, M. Polikarpova, N. Belyakov, O. Kukina, V. Dmitriev. IEEE Trans. Appl. Supercond. 20, 1614 (2010). Crossref
7. V. I. Pantsyrny, N. E. Khlebova, S. V. Sudyev, O. V. Kukina, N. A. Beliakov, M. V. Polikarpova. IEEE Trans. Appl. Supercond. 24 (3), 0502804 (2014). Crossref
8. N. D. Stepanov, A. V. Kuznetsov, G. A. Salishchev, N. E. Khlebova, V. I. Pantsyrny. Mater. Sci. Eng. A. 564, 264 (2013). Crossref
9. Y. Wang, J. Wang, H. Zou, Y. Wang, X. Ran. Materials. 12, 339 (2019). Crossref
10. Q. Feng, L. Song, Y. Zeng, Y. Fang, L. Meng, J. Liu, H. Wang. J. Alloys Compd. 640, 45 (2015). Crossref
11. J. D. Verhoeven, H. L. Downing, L. S. Chumbley, E. D. Gibson. J. Appl. Phys. 65, 1293 (1989). Crossref
12. F. Heringhaus, H.-J. Schneider-Muntau, G. Gottstein. Mater. Sci. Eng. A. 347, 9 (2003). Crossref
13. Y. Leprince-Wang, K. Han, Y. Huang, K. Yu-Zhang. Mater. Sci. Eng. A. 351, 214 (2003). Crossref
14. I. L. Deryagina, E. N. Popova, E. G. Valova-Zaharevskaya, E. I. Patrakov. Phys. Met. Metallogr. 119, 92 (2018). Crossref
15. L. Thilly, F. Lecouturier, J. von Stebut. Acta Mater. 50, 5049 (2002). Crossref
16. V. V. Popov, E. N. Popova. Mater. Trans. 60, 1209 (2019). Crossref
17. L. Deng, Z. Liu, B. Wang, K. Han, H. Xiang. Mater. Charact. 150, 62 (2019). Crossref
18. L. Deng, K. Han, K. T. Hartwig, T. M. Siegrist, L. Dong, Z. Sun, X. Yang, Q. Liu. J. Alloys Compd. 602, 331 (2014). Crossref
19. L. Deng, B. Wang, K. Han, R. Niu, H. Xiang, K. T. Hartwig, X. Yang. J. Mater. Sci. 54, 840 (2019). Crossref
20. X. Sauvage, L. Renaud, B. Deconihout, D. Blavette, D. H. Ping, K. Hono. Acta Mater. 49, 389 (2001). Crossref
21. P. Wang, Y. Wu, J. Li, M. Liang. J. Mater. Eng. Perform. (2023). Crossref
22. V. V. Guryev, M. V. Polikarpova, P. A. Lukyanov, N. E. Khlebova, V. I. Pantsyrny. Cryogenics. 90, 56 (2018). Crossref
23. J. D. Embury, J. P. Hirth. Acta Metall. Mater. 42, 2051 (1994). Crossref
24. V. Pantsyrny, M. Polikarpova, V. Guryev, P. Lukyanov, N. Khlebova, V. Sergeev. IEEE Trans. Appl. Supercond. 30 (4), 4301404 (2020). Crossref
25. A. R. Stokes, A. J. C. Wilson. Proc. Phys. Soc. 56, 174 (1944). Crossref
26. E. G. Valova-Zaharevskaya, I. L. Deryagina, E. N. Popova, N. E. Khlebova, V. I. Pantsyrny. Diagnostics, Resour. Mech. Mater. Struct. 5, 116 (2018). Crossref
27. V. V. Guryev, P. A. Lukyanov, E. A. Golovkova, A. V. Irodova, M. V. Polikarpova, N. E. Khlebova, V. I. Pantsyrny. Nanobiotechnology Reports. 17, 328 (2022). Crossref
28. P. Wang, M. Liang, X. Ma, X. Xu, J. Li. J. Mater. Eng. Perform. (2023). Crossref
29. I. L. Deryagina, E. N. Popova, E. I. Patrakov. Metals. 13, 1576 (2023). Crossref
30. F. Dupouy, E. Snoeck, M. J. Casanove, C. Roucau, J. P. Peyrade, S. Askenazy. Scr. Mater. 34, 1067 (1996). Crossref
31. E. N. Popova, I. L. Deryagina, E. G. Valova-Zaharevskaya, A. V. Stolbovsky, N. E. Khlebova, V. I. Pantsyrny. Defect Diffus. Forum. 354, 183 (2014). Crossref

Similar papers

Funding

1. Ministry of Science and Higher Education of the Russian Federation - theme “Pressure” No. 122021000039-4
2. M.N. Mikheev lnstitute of Metal Physics UB RAS - Youth Project No. m20-22