Evolution of icosahedral copper particles in the process of their growth during electrocrystallization

A.A. Vikarchuk, N.N. Gryzunova, T.A. Borgardt show affiliations and emails
Received 23 August 2018; Accepted 17 January 2019;
This paper is written in Russian
Citation: A.A. Vikarchuk, N.N. Gryzunova, T.A. Borgardt. Evolution of icosahedral copper particles in the process of their growth during electrocrystallization. Lett. Mater., 2019, 9(1) 124-129
BibTex   https://doi.org/10.22226/2410-3535-2019-1-124-129

Abstract

Copper truncated icosahedra obtained by electrodeposition of metalMetal icosahedral microparticles with six fifth-order symmetry axes, a specific faceting and high catalytic activity, open up wide opportunities for their usage as catalysts capable of operating in fluidized bed reactors. In this paper, microparticles of copper of the icosahedral habitus about 15 microns in size in the form of truncated icosahedra have been grown for the first time by electrodeposition from sulfuric acid phate electrolyte. Such icosahedra are faceted by twelve {110} crystallographic planes and twenty {111} planes. Studies of the morphology of the surface of copper truncated icosahedra using metallography and electron microscopy have shown that in the process of growth they transform into perfect icosahedra faceted only by {111} planes. The structure of icosahedral copper particles has been studied in detail. Electron microscopic studies of the cross section of copper icosahedral particles show that they consist of sub-structural volume elements (fragments) that are separated from each other by twin and (or) dislocation boundaries. Often inside the fragments there are broken boundaries, near which extinction contours of dislocation origin are observed. In addition, coherent twin boundaries of the {111} <112> type are observed inside the fragments; they do not create long-range stress fields, twin layers, insertions and dislocations. Pentagonal pits appear on the surface of particles in the process of electrodeposition or etching, which indicate the presence of partial disclinations there. According to the results of experimental data, a scheme for the evolution of truncated icosahedra in the process of copper electrocrystallization into perfect icosahedra is proposed. Using the disclination approach, the density of the total free energy of a truncated and perfect icosahedron has been estimated and it is shown that the transformation of a truncated icosahedron into a perfect one is energetically justified.

References (29)

1. V. G. Gryaznov, J. Heidenreich, A. M. Kaprelov, S. A. Nepijko, A. E. Romanov, J. Urban. Crystal Research and Technology. 34, 1091 (1999). <1091::AID-CRAT1091>3.0.CO;2-S. Crossref
2. X. Yang, K. D. Gilroy, M. Vara, M. Zhao, S. Zhou, Y. Xia. Chemical Physics Letters. 683, 613 (2017). Crossref
3. S. Ogawa, S. Ino. Journal of Crystal Growth. 13 / 14, 48 (1972).
4. L. D. Howie. Marks Philosophical Magazine A. 1 (49), 95 (1984).
5. L. D. Marks, L. Peng. Journal of Physics: Condensed Matter. 28, 48 (2016).
6. H. Wang, Sh. Zhou, K. D. Gilroy, Z. Cai, Y. Xia. Nano Today. 15, 121 (2017). Crossref
7. I. V. Mishakov, V. A. Lyholobov. Introduction to catalysis. Novosibirsk, NSU (2015) 67 p. (in Russian) [И. В. Мишаков, В. А. Лихолобов. Введение в катализ. Новосибирск, НГУ (2015) 67 c.].
8. G. V. Meshcheryakov. Proceedings of Tula State University. Natural Sciences. 1 (2), 148 (2014). (in Russian) [Г. В. Мещеряков. Известия ТулГУ. Естественные науки. 1 (2), 148 (2014).].
9. Yu. N. Gornostyrev, I. N. Karkin, M. I. Candzelson, A. V. Trefilov. Physics of metals and metallurgy. 2 (96), 19 (2003). (in Russian) [Ю. Н. Горностырев, И. Н. Карькин, М. И. Канцельсон, А. В. Трефилов. Физика металлов и металловедение. 2 (96), 19 (2003).].
10. A. A. Vikarchuk, I. S. Yasnikov. Structurization in nanoparticles and microcrystals with pentagonal symmetry, formed during electrocrystallization of fcc metals. Togliatti, TSU (2006) 208 p.] (in Russian) [А. А. Викарчук, И. С. Ясников. Структурообразование в наночастицах и микрокристаллах с пентагональной симметрией, формирующихся при электрокристаллизации ГЦК-металлов. Тольятти, ТГУ (2006) 208 с.].
11. A. I. Gusev, A. A. Rempel. Nanocrystalline materials. Moscow, Fizmatlit. (2001) 224 p. (in Russian) [А. И. Гусев, А. А. Ремпель. Нанокристаллические материалы. Москва, Физматлит. (2001) 224 с.].
12. M. Y. Gutkin, A. L. Kolesnikova, I. S. Yasnikov, A. A. Vikarchuk, E. C. Aifantis, A. E. Romanov. European Journal of Mechanics, A / Solids, 68, 133 (2018). Crossref
13. I. S. Yasnikov, A. A. Vikarchuk. Metal Science and Heat Treatment. 49 (3-4), 97 (2007). (in Russian) [И. С. Ясников, А. А. Викарчук. Металловедение и термообработка. 49 (3-4), 97 (2007).].
14. I. S. Yasnikov. Letters on Materials. 1, 51 (2011). (in Russian) [И. С. Ясников. Письма о материалах. 1, 51 (2011).]. Crossref
15. T. A. Ovechkina, N. N. Gryzunova, A. A. Vikarchuk et al. Letters on Materials. 7 (2), 120 (2017). (in Russian) [Т. А. Овечкина, Н. Н. Грызунова, А. А. Викарчук и др. Письма о материалах. 7 (2), 120 (2017).]. Crossref
16. P. S. Aleksandrov, A. I. Markushevich, A. Ya. Khinchin. Polygons and polyhedra. Encyclopedia of elementary mathematics. Fourth edition. Geometriya. Moscow, State Publishing House of Physical and Mathematical Literature. (1963) 382 p. (in Russian) [П. С. Александрова, А. И. Маркушевича, А. Я. Хинчина. Многоугольники и многогранники. Энциклопедия элементарной математики. Книга четвёртая. Геометрия. Москва, Государственное издательство физико-математической литературы. (1963) 382 c.].
17. V. I. Tomilin, N. P. Tomilina, V. A. Bakhtina. Physical Materials Science. Part 1. Passive dielectrics: study guide. Krasnoyarsk, Siberian. federal university. (2012) 280 p. (in Russian) [В. И. Томилин, Н. П. Томилина, В. А. Бахтина. Физическое материаловедение: в 2 ч. Ч. 1. Пассивные диэлектрики: учеб. пособие. Красноярск, Сиб. федер. ун-т. (2012) 280 с.].
18. The process of real crystal formation. Ed. by N. V. Belova. Moscow, Nauka. (1977) 235 p. (in Russian) [Процессы реального кристаллообразования . Под ред. Н. В. Белова. Москва, Наука. (1977) 235 с.].
19. E. V. Kozlov, A. M. Glezer, N. A. Koneva, N. A. Popova, I. A. Kurzina. Fundamentals of plastic deformation of nanostructured materials. Moscow, Fizmatlit. (2016) 304 p. (in Russian) [Э. В. Козлов, А. М. Глезер, Н. А. Конева, Н. А. Попова, И. А. Курзина. Основы пластической деформации наноструктурных материалов. Москва, Физматлит. (2016) 304 с.].
20. M. A. Shtremel. Strength of alloys. Part 1: Defects of the lattice. Moscow, MISIS. (1999) 384 p. (in Russian) [М. А. Штремель. Прочность сплавов. Ч. 1: Дефекты решетки. Москва, МИСИС. (1999) 384 с.].
21. V. V. Povetkin, I. M. Kovensky. Electrolytic coating structure. Moscow, Metallurgy. (1989) 136 p. (in Russian) [Поветкин В. В., Ковенский И. М. Структура электролитических покрытий. Москва. Металлургия. (1989) 136 с.].
22. I. A. Ovidko, N. V. Skiba. Materials Physics and Mechanics. 21, 288 (2014). (in Russian) [И. А. Овидько, Н. В. Скиба. Физика и механика материалов. 21, 288 (2014).].
23. M. Yu. Gutkin, I. A. Ovidko, N. V. Skiba. Solid State Physics. 46 (11), 1975 (2004). (in Russian) [М. Ю. Гуткин, И. А. Овидько, Н. В. Скиба. Физика твердого тела. 46 (11), 1975 (2004).].
24. G. F. Sarafanov, V. N. Perevezentsev. Letters on Materials. 1 (1), 19 (2011). (in Russian) [Г. Ф. Сарафанов, В. Н. Перевезенцев. Письма о материалах. 1 (1), 19 (2011).]. Crossref
25. L. M. Dorogin, S. Vlassov, A. L. Kolesnikova, I. Kink, R. Lohmus, and A. E. Romanov. Physica Status Solidi B. 247 (2), 288 (2010). Crossref
26. A. E. Katz. Energy, economy, technology, ecology. 3, 25 (2002). (in Russian) [А. Е. Кац. Энергия, экономика, техника, экология. 3, 25 (2002).].
27. S. Kibey, J. B. Liu, D. D. Johnson, H. Schitoglu. Acta Materialia. 55, 6843 (2007). Crossref
28. J. P. Hirth, J. Lothe. Theory of Dislocations. New York, Willey. (1982) 435 p.
29. V. N. Chuvildiev. Bulletin of the Nizhny Novgorod University. N. I. Lobachevsky. 5 (2), 124 (2010). (in Russian) [В. Н. Чувильдиев. Вестник Нижнегородского ун-та им. Н. И. Лобачевского, 5 (2), 124 (2010).

Cited by (1)

1.
A.A. Vikarchuk, N.N. Gryzunova, Yu.R. Kolobov, A.M. Glezer. Materials Letters. 273, 127917 (2020). Crossref

Similar papers