Growth of Al3Ni particles during friction stir processing of the AA6063+NiO composite

I.S. Sugonyako ORCID logo , D.B. Kabirova, N.F. Khayretdinov, R.F. Fazlyakhmetov, M.F. Imayev show affiliations and emails
Received 28 August 2023; Accepted 31 October 2023;
Citation: I.S. Sugonyako, D.B. Kabirova, N.F. Khayretdinov, R.F. Fazlyakhmetov, M.F. Imayev. Growth of Al3Ni particles during friction stir processing of the AA6063+NiO composite. Lett. Mater., 2023, 13(4s) 431-437
BibTex   https://doi.org/10.22226/2410-3535-2023-4-431-437

Abstract

After 10 passes of friction stir processing (FSP) three phases are observed - the aluminum matrix, NiO and Al3Ni particles. It should be noted that there are no traces of NiO remaining inside the Al3Ni particles. Thus, an acceleration of the chemical reaction occurred between the 4th and 10th passes of friction stir processing (FSP), leading to the formation of a significantly larger quantity of Al3Ni and Al2O3 particles.The aim of the study was to investigate the formation of an in-situ composite during friction stir processing (FSP) of the AA6063 alloy with introduced NiO particles. To produce a composite, 4 and 10‑pass FSP were conducted on sheets of aluminum alloy AA6063 with pre-cut grooves embedded with NiO powder. The chemical interaction between NiO and aluminum solid solution, resulting in the formation of Al3Ni and Al2O3 phases, was investigated using EDS, EBSD, and X-ray diffraction methods. As the number of FSP passes increases, the size of NiO particles decreases, while the size of Al3Ni particles grows. Four passes of FSP are not sufficient for the formation of an in-situ composite. After a 10‑pass FSP, the volume fraction of Al3Ni and NiO phases was about 21 and 3 %, and the sizes of Al3Ni particles were nearly an order of magnitude larger than that of unreacted NiO ones. It has been established that the coarsening of Al3Ni particles occurs both through coalescence and coagulation. The X-ray diffraction pattern did not show peaks of Al2O3, suggesting that the aluminum oxide in the obtained composite is likely in an amorphous state.

References (34)

1. M. Mosisili, V. Msomi, S. Mabuwa. Materials Today: Proceedings. 56 (4), 2268 (2022). Crossref
2. P. V. Reddy, G. S. Kumar, D. M. Krishnudu, H. R. Rao. Journal of Bio- and Tribo-Corrosion. 6 (3), 1 (2020). Crossref
3. S. Ranjan, J. Karloopia, P. K. Jha. The Minerals. Metals & Materials Series. 53 (2022). Crossref
4. A. Kumar, S. Lal, S. Kumar. J. Mater. Res. Technol. 2, 250 (2013). Crossref
5. Z. Min, W. Gaohui, D. Zuoyong, J. Longtao. Mater. Sci. Eng. A. 374, 303 (2004). Crossref
6. K. Surekha, B. S. Murty, K. P. Rao. Surf. Coat. Technol. 202, 4057 (2008). Crossref
7. R. A. Varin. Mater. Trans. A. 33, 193 (2003). Crossref
8. D. A. P. Prabhakar, A. K. Shettigar, M. A. Herbert, M. Patel G C, D. Yu. Pimenov, K. Giasin, C. Prakash. J. of Mater. Res. and Technol. 20, 3025 (2022). Crossref
9. S. Mironov, Y. S. Sato, H. Kokawa. J. of Mater. Sci. and Technol. 34, 58 (2018). Crossref
10. A. Heidarzadeh, S. Mironov, R. Kaibyshev, G. Çam, A. Simar, A. Gerlich, F. Khodabakhshi, A. Mostafaei, D. P. Field, J. D. Robson, A. Deschamps, P. J. Withers. Progress in Materials Science. 117, 100752 (2021). Crossref
11. K. P. Boopathiraja, R. Ramamoorthi, V. Vadivel Vivek, K. Vickram, S. Vinodh Kumar, K. P. Yuvaraj. Materials Today: Proceedings. 45 (2), 1156 (2021). Crossref
12. G. Azimi-Roeen, S. F. Kashani-Bozorg, M. Nosko, S. Lotfian. Met. Mater. Int. 26, 1441 (2020). Crossref
13. M. S. Węglowski. Archives of civil and mechanical engineering. 18 (1), 114 (2018). Crossref
14. R. S. Mishra, Z. Y. Ma. Mater. Sci. and Eng. A. 341, 307 (2003). Crossref
15. X. Chen, Y. Zhang, M. Cong. Vacuum. 175, 109292 (2020). Crossref
16. M. M. El-Sayed, A. Y. Shash, M. Abd-Rabou, M. G. El Sherbiny. J. of Advanced Joining Processes. 3, 100059 (2021). Crossref
17. A. Kumar, V. Kumar. Materials Today: Proceedings. 63, 494 (2022). Crossref
18. R. S. Mishra, Z. Y. Ma. Mater. Sci. Eng. R. 50 (1-2), 1 (2005). Crossref
19. A. Shahi, M. H. Sohi, D. Ahmadkhaniha, N. Ghambari. Int. J. Manuf. Technol. 75, 1331 (2014). Crossref
20. C. J. Hsu, C. Y. Chang, P. W. Kao, N. J. Ho, C. P. Chang. Acta Mater. 54, 5241 (2006). Crossref
21. S. C. Tjong. Adv. Eng. Mater. 9, 639 (2007). Crossref
22. V. Sharma, U. Prakash, B. V. Manoj Kumar. Journal of Materials Processing Technology. 224, 117 (2015). Crossref
23. N. Gangil, A. N. Siddiquee, S. Maheshwari. Journal of Alloys and Compounds. 715, 91 (2017). Crossref
24. A. Kh. Valeeva, M. F. Imayev. Letters on Materials. 11 (4s), 544 (2021). Crossref
25. F. A. Mehraban, F. Karimzadeh, M. H. Abbasi. JOM. 67 (5), 998 (2015). Crossref
26. I. I. Novikov, V. S. Zolotorevsky, V. K. Portnoy et. al. (ed. by V. S. Zolotorevsky). Physical Metallurgy. Volume 2. Heat treatment. Alloys. Moscow, MISIS (2014) 526 p. (in Russian) [И.И. Новиков, В.С. Золоторевский, В.К. Портной и др. (под ред. В.С. Золоторевского). Металловедение. Том 2. Термическая обработка. Сплавы. Москва, МИСиС (2014) 526 c.].
27. E. Dastanpoor, M. H. Enayati, F. Karimzadeh. Adv. Powder Technol. 25, 519 (2014). Crossref
28. C. Suwanpreecha, J. Perrin Toinin, R. A. Michi, P. Pandee, D. C. Dunand, C. Limmaneevichitr. Acta Materialia. 164, 334 (2019). Crossref
29. N. A. Belov, A. N. Alabin, D. G. Eskin. Scripta Materialia. 50, 89 (2004). Crossref
30. R. A. Michi, A. Plotkowski, A. Shyam, R. R. Dehoff, S. S. Babu. Int. Mater. Rev. 67 (3), 298 (2022). Crossref
31. Kh. Valeeva, A. Kh. Akhunova, D. B. Kabirova, M. F. Imayev, R. F. Fazlyakhmetov. Letters on Materials. 11 (2), 119 (2021). (in Russian) [А.Х. Валеева, А.Х. Ахунова, Д.Б. Кабирова, М.Ф. Имаев, Р.Ф. Фазлыахметов. Письма о материалах. 11 (2), 119 (2021).]. Crossref
32. N. S. Harsha Gunda, R. A. Michi, M. F. Chisholm, A. Shyam, D. Shin. Computational Materials Science. 217, 111896 (2023). Crossref
33. K. M. Knowles, P. J. Goodhew. Philos. Mag. A. 48, 527 (1983). Crossref
34. Yu. G. Frolov. Course in colloid chemistry: surface phenomena and dispersed systems. Moscow, Khimiya (1989) 462 p. (in Russian) [Ю.Г. Фролов. Курс коллоидной химии: Поверхностные явления и дисперсные системы. Москва, Химия (1989) 462 с.].

Similar papers

Funding

1. Ministry of Science and Higher Education of the Russian Federation - State Assignment of the IMSP RAS (No. AAAA-A19-119021390106-1)