Effect of initial state and processing temperature on structure and properties under hot torsion of AA5754 alloy

A. Kulakowska, K. Laber, H. Dyja, A. Zavdoveev ORCID logo show affiliations and emails
Received 03 March 2021; Accepted 26 May 2021;
Citation: A. Kulakowska, K. Laber, H. Dyja, A. Zavdoveev. Effect of initial state and processing temperature on structure and properties under hot torsion of AA5754 alloy. Lett. Mater., 2021, 11(3) 233-238
BibTex   https://doi.org/10.22226/2410-3535-2021-3-233-238

Abstract

A successful attempt to incorporate knowledge obtained from severe plastic deformations into the AA5XXX series aluminum alloys treatment has been made.  These advantages allowed revealing age hardenable mechanisms in non-age-hardenable alloy AA5XXX. All side investigation of structure and properties was made.The effect of initial state and processing temperature of AA5754 alloy during hot torsion tests is presented. This deformation scheme allows simulating complex strain-stressed conditions. The tests were conducted on specimens solution heat treated in water and for specimens after extrusion and homogenizing treatment, respectively. It was determined that in the investigated range of deformation parameters, the solution treatment process has no effect on the plasticity of the alloy under investigation, but does have an influence on its hardness, microhardness distribution and grain size. In particular, the specimens deformed in the initial state behave according to the deformation pattern i. e. the maximum values of hardening and grain refinement occur on the deformed specimen surface, while the minimum values, inside the specimen. The same effect of deformation was observed for solution-treated specimens deformed at 250°C. While deformation in the extruded and homogenized state, the most uniform hardness distribution and the maximum deformation were exhibited by specimens deformed at 250°C.Thus, a successful attempt to incorporate knowledge obtained from severe plastic deformations (SPD) into the AA5XXX series aluminum alloys treatment has been made. The incorporation of SPD advantages allowed revealing age hardenable mechanism in non-age-hardenable alloy AA5XXX. All side investigation of structure and properties was made.

References (22)

1. I. Polmear, D. StJohn, J.-F. Nie, M. Qian, I. Polmear, D. StJohn, J.-F. Nie, M. Qian. Light Alloy. 2017, 157 (2017). Crossref
2. E. Pashinska, V. Varyukhin, S. Dobatkin, A. Zavdoveev. Emerg. Mater. Res. 2, 138 (2013). Crossref
3. H. S. Liu, B. Zhang, G. P. Zhang. J. Mater. Sci. Technol. 27, 15 (2011). Crossref
4. I. Sabirov, M. Y. Murashkin, R. Z. Valiev. Mater. Sci. Eng. A. 560, 1 (2013). Crossref
5. Z. C. Wang, P. B. Prangnell. Mater. Sci. Eng. A. 328, 87 (2002). Crossref
6. T. Mukai, M. Kawazoe, K. Higashi. Mater. Sci. Eng. A. 247, 270 (1998). Crossref
7. M. Knapinski, H. Dyja, A. Kawalek, T. Fraczek, K. Laber. Metalurgija. 52, 239 (2013).
8. J. A. Wert, N. E. Paton, C. H. Hamilton, M. W. Mahoney. Metall. Trans. A, Phys. Metall. Mater. Sci. 12 A, 1267 (1981). Crossref
9. N. T. Kareva, Y. D. Koryagin. Met. Sci. Heat Treat. 56, 483 (2015). Crossref
10. H. J. Roven, H. Nesboe, J. C. Werenskiold, T. Seibert. Mater. Sci. Eng. A. 410 - 411, 426 (2005). Crossref
11. T. Tański, P. Snopiński, W. Pakieła, W. Borek, K. Prusik, S. Rusz. Arch. Civ. Mech. Eng. 16, 325 (2016). Crossref
12. T. Tański, P. Snopiński, K. Prusik, M. Sroka. Mater. Charact. 133, 185 (2017). Crossref
13. T. Krajňák, P. Minárik, J. Stráská, J. Gubicza, K. Máthis, M. Janeček. J. Mater. Sci. 54, 3469 (2019). Crossref
14. K. Laber, A. Kułakowska, H. Dyja. METAL 2018 - 27th International Conference on Metallurgy and Materials, Conference Proceedings. Brno (2018) p. 1599.
15. T. Bajor, A. Kulakowska, H. Dyja. Materials. 13 (5), 1114 (2020). Crossref
16. Y. Xu, H. Jiao, Y. Zhang, F. Fang, X. Lu, Y. Wang, G. Cao, C. Li, R. D. K. Misra. J. Mater. Sci. Technol. 33, 1465 (2017). Crossref
17. J. Huang, K.-M. Zhang, Y.-F. Jia, C.-C. Zhang, X.-C. Zhang, X.-F. Ma, S.-T. Tu. J. Mater. Sci. Technol. 35, 409 (2019). Crossref
18. K. Laber. Hutnik-Wiadomości Hutnicze. 5, 238 (2015).
19. K. Laber, A. Kawałek, S. Sawicki, H. Dyja, J. Borowski, D. Leśniak, H. Jurczak. 2nd International Conference of Non-Ferrous Metals ICNFM’2015. Cracow, Poland, AGH University of Science and Technology (2015) p. 124.
20. S. Sawicki, A. Kawałek, K. Labek, H. Dyja, J. Borowski, D. Leśniak, H. Jurczak. 2nd International Conference on Non-Ferrous Metals ICNFM’2015. Cracow, Poland, AGH University of Science and Technology (2015) p. 129.
21. H. Dyja, A. Gałkin, M. Knapiński. Reologia metali odkształcanych plastycznie. Czestochowa, University Press of the Czestochowa University of Technology (2010) 220 p.
22. F. Grossman, E. Hadasik. Technologiczna plastyczność metali. Badania plastometryczne. Katowice, University Press of the Silesian University of Technology (2005) pp. 11-12.

Similar papers