Ultrasonic spot welded CP Ti / AA2024 / CP Ti alloy joints

A.A. Mukhametgalina, M.A. Murzinova ORCID logo , A.A. Nazarov show affiliations and emails
Received 10 November 2021; Accepted 19 November 2021;
Citation: A.A. Mukhametgalina, M.A. Murzinova, A.A. Nazarov. Ultrasonic spot welded CP Ti / AA2024 / CP Ti alloy joints. Lett. Mater., 2021, 11(4) 508-513
BibTex   https://doi.org/10.22226/2410-3535-2021-4-508-513

Abstract

In present study, cryorolled and naturally aged AA2024 alloy sheet and annealed commercially pure titanium sheets were subjected to USW. Microstructure and properties of the welded joints after natural aging were examined.Ultrasonic welding (USW) is a promising technique of solid state joining of similar and dissimilar materials, including aluminum and titanium alloys. Differences in the physical and mechanical properties of the materials to be joined make it difficult to adjust the welding conditions to form high-quality joints. The development of natural aging in aluminum alloys may cause a change in the fracture mode and strength of Al / Ti ultrasonically welded joints. In present study, cryorolled and naturally aged AA2024 alloy sheet and annealed commercially pure titanium sheets were subjected to USW. The pre-treatment provided similar values of the hardness of the initial sheets. To avoid the adhesion of aluminum to the welding tool during welding, the AA2024 alloy sheet was sandwiched between the titanium sheets. Microstructure and properties of the welded joints after natural aging were examined. No cracks, discontinuities, pores were observed near the contact surfaces at magnifications of the microscope up to 1000 times. No diffusional or intermetallic reaction layers were revealed in the welded joints. The microstructure and microhardness of titanium sheets did not change after ultrasonic welding. Recovery / recrystallization development led to a decrease in microhardness of AA2024 alloy sheet. All welded samples fractured along the interface between the AA2024 alloy sheet and the bottom titanium sheet adjacent to the anvil. The average lap shear failure load of the welds was 1612 ± 278 N (shear strength of approximately 57 ±10 MPa).

References (21)

1. K. H. Rendigs. Mater. Sci. Forum. 242, 11 (1997). Crossref
2. K. Liu, Y. Li, S. Wei, J. Wang. Mater. Manuf. Process. 29 (8), 969 (2014). Crossref
3. I. Tomashchuk, P. Sallamand, E. Cicala, P. Peyre, D. Grevey. J. Mater. Process Technol. 217, 96 (2015). Crossref
4. S. Chen, L. Li, Y. Chen, J. Huang. J. Alloys Compd. 509 (3), 891 (2011). Crossref
5. R. Jiangwei, L. Yajiang, F. Tao. Mater. Lett. 56 (5), 647 (2002). Crossref
6. M. Aonuma, K. Nakata. Mater. Trans. 52 (5), 948 (2011). Crossref
7. Y. C. Kim, A. Fuji. Sci. Technol. Weld. Join. 7 (3), 149 (2002). Crossref
8. M. P. Matheny, K. F. Graff. In: Power Ultrasonics (Ed. by J. A. Gallego-Juárez, K. F. Graff). Woodhead Publishing, UK (2015) pp. 259 - 293. Crossref
9. D. Bakavos, P. B. Prangnell. Mater. Sci. Eng. A. 527 (23), 6320 (2010). Crossref
10. S. Q. Wang, V. K. Patel, S. D. Bhole, G. D. Wen, D. L. Chen. Mat. Des. 78, 33 (2015). Crossref
11. L. Zhou, J. Min, W. X. He, Y. X. Huang, X. G. Song. J. Manuf. Process. 33, 64 (2018). Crossref
12. C. Q. Zhang, J. D. Robson, P. B. Prangnell. J. Mater. Proc. Technol. 231, 382 (2016). Crossref
13. C. Q. Zhang, J. D. Robson, O. Ciuca, P. B. Prangnell. Mater. Charact. 97, 83 (2014). Crossref
14. F. Balle, J. Magin. Phys. Procedia. 70, 846 (2015). Crossref
15. H. M. Zhang, Y. J. Chao, Z. Luo. Sci. Technol. Weld. Join. 22 (1), 79 (2017). Crossref
16. M. V. Markushev, E. V. Avtokratova, I. Ya. Kazakulov, S. V. Krymskiy, M. Yu. Mochalova, M. Yu. Murashkin, O. Sh. Sitdikov. Deformation and Failure of Mater. 4, 36 (2010). (in Russian) [М. В. Маркушев, Е. В. Автократова, И. Я. Казакулов, С. В. Крымский, М. Ю. Мочалова, М. Ю. Мурашкин, О. Ш. Ситдиков. Деформация и разрушение материалов. 4, 36 (2010).].
17. E. V. Avtokratova, S. V. Krymsky, M. V. Markushev, O. Sh. Sitdikov. Letters on Materials. 1, 92 (2011). (in Russian) [Е. В. Автократова, С. В. Крымский, М. В. Маркушев, О. Ш. Ситдиков. Письма о материалах. 1, 92 (2011).]. Crossref
18. S. V. Krymskiy, E. V. Avtokratova, O. S. Sitdikov, M. V. Markushev, A. V. Mikhaylovskaya. The Physics of Metals and Metallography. 116 (7), 676 (2015). Crossref
19. R. R. Ilyasov, E. V. Avtokratova, A. D. Kotov, S. V. Krymsky, M. V. Markushev, A. V. Mikhailovskaya, O. Sh. Sitdikov. Tambov University Reports. 21 (3), 1033 (2016). (in Russian) [Р. Р. Ильясов, Е. В. Автократова, А. Д. Котов, С. В. Крымский, М. В. Маркушев, А. В. Михайловская, О. Ш. Ситдиков. Вестник Тамбовского университета. 21 (3), 1033 (2016).]. Crossref
20. G. Lütjering, J. C. Williams. Titanium, 2nd edition. Berlin, Heidelberg, New York, Springer (2007).
21. E. de Vries. Mechanics and mechanisms of ultrasonic metal welding: Ph.D. dissertation. The Ohio State University, Columbus, OH (2004).

Similar papers

Funding

1. IMSP RAS State assignment -