Effect of initial condition on nanostructuring and strengthening of age-hardenable aluminum alloys under severe plastic deformation (Review)

M. Markushev, E. Avtokratova, O. Sitdikov
Received: 01 November 2017; Revised: 08 November 2017; Accepted: 15 November 2017
Citation: M. Markushev, E. Avtokratova, O. Sitdikov. Effect of initial condition on nanostructuring and strengthening of age-hardenable aluminum alloys under severe plastic deformation (Review). Letters on Materials, 2017, 7(4) 459-464
BibTex   DOI: 10.22226 / 2410‑3535‑2017‑4‑459‑464

Abstract

Typical TEM structures of pre-quenched 1420-type alloys after HPT (RT, 4 revolutions, P=6GPa)  and further annealingGeneral requirements to the initial structure/phase state of the commercial middle- and high-strength age-hardenable aluminum alloys, especially to precipitates of aluminides of transition metals and main strengthening phases, under thermomechanical processing, involving severe plastic deformation (SPD), preliminary aging and re-aging, and aiming at nanostructuring the alloy matrix, are reviewed. The data on the alloy structure, hardness and tensile strength, realized in disc-shape samples severely deformed via room temperature high pressure torsion (HPT), have been taken into consideration. Influence of the nature, morphology and densities of secondary phases on efficiency of the alloys nanostructuring and strengthening are analyzed. The role of main strengthening phases in the alloys (sub)grain refinement to nano sizes, as well as in complete suppression of the matrix nanostructuring, are discussed. Nature of the alloys structure transformations and structure-strength relations owing to evolution of the grain and second phase structures due to SPD, preliminary and post-SPD heat treatment are considered. It was concluded that the «direct» impact of the formation of nanosized net of grain boundaries on the alloys strength is not exceeding the impact of its dispersion hardening under conventional aging. The main alloy hardening effect under HPT is due to an increasing the crystal defects densities, predominantly of dislocations.

References (37)

1.
N. P. Lyakishev. Tech. Light Alloys. 3, 40 (2006). (in Russian) [Н. П. Лякишев. ТЛС 3, 40 (2006)].
2.
R. A. Andrievskу, A. M. Glezer. Physics-Uspekhi. 52, 315 (2009).
3.
V. I. Elagin. Tech. Light Alloys. 2, 6 (2008). (in Russian) [В. И. Елагин. ТЛС 2, 6 (2008)].
4.
R. Z. Valiev, A. V. Korznikov, R. R. Mulyukov, Mat. Sci. Eng. A 168, 141 (1993).
5.
V. M. Segal. Mater. Sci. Eng. A 197, 157 (1995).
6.
F. J. Humphreys, P. B. Prangnell, J. R. Bowen, A. Gholinia, C. Harris. Phil. Trans. R. Soc. Lond. A357, 1663 (1999).
7.
M. V. Markushev. Letters on Materials. 1(1), 36 – 42 (2011) (in Russian) [М. В. Маркушев. Письма о материалах 1(1), 36 – 42 (2011)]. DOI: 10.22226/2410-3535-2011-1-36-42
8.
R. Z. Valiev, Y. Estrin, Z. Horita, T. G. Langdon, M. J. Zehetbauer, Y. T. Zhu. JOM. 68, 1216 (2016).
9.
R. Z. Valiev, I. V. Aleksandrov. Bulk Nanostructured Metallic Materials: Processing, Structure, and Properties — Moscow: Akademkniga. 2007 (in Russian) [Р. З. Валиев, И. В. Александров. Объемные наноструктурные металлические материалы: получение, структура и свойства. М.: Академкнига, 2007].
10.
R. Z. Valiev, Y. Estrin, Z. Horita, T. G. Langdon, M. J. Zehetbauer, Y. T. Zhu. Mater. Res. Lett., 4, 1 (2016).
11.
K. Kosuge, K. Takeuti, Bull. Jap. Inst. Metals. 21, 104 (1982).
12.
E. Nes and J. A. Wert, Scr. Met. 18, 1433 (1984).
13.
J. A. Wert, N. E. Paton, C. H. Hamilton, M. W. Mahoney, Metall. Trans. A. 12A, 1267 (1981).
14.
M. V. Markushev, Phys. Met. Metallogr. 8, 161 (2009).
15.
F. J. Humphreys, Acta Met. 25, 1323 (1977).
16.
F. J. Humphreys, M. Hatherly. Recrystallization and Related Annealing Phenomena, 2nd ed. — Amsterdam: Elsevier. 2004. 658 p.
17.
M. V. Markushev. Phys. Met. Metallogr. 7, 43 (2009).
18.
O. Sitdikov, E. Avtokratova, R. Babicheva. Phys. Met. Metallogr. 2, 153 (2010).
19.
C. Y. Barlow, N. Hansen, Y. L. Liu. Acta Mat. 50, 171 (2002).
20.
M. V. Markushev, M. Yu. Murashkin, C. C. Bampton, D. A. Hardwick. Mater, Sci. Eng. A. 234 – 236, 927 (1997).
21.
M. V. Markushev, M. Yu. Murashkin. Phys. Met. Metallogr. 90, 506 (2000).
22.
M. V. Markushev, M. Yu. Murashkin. Phys. Met. Metallogr. 98, 221 (2004).
23.
M. V. Markushev, M. Yu. Murashkin. Mater. Sci. Eng. A, 367, 234 (2004).
24.
M. Markushev, A Vinogradov. Room Temperature Mechanical Properties of Submicrocrystalline Commercial Aluminum Alloys Processed by Severe Plastic Deformation. In Severe Plastic Deformation: Towards Bulk Production of Nanostructured Materials, (ed) Burnhanettin Altan, Nova Science Publishers, USA, 2006, pp. 233 – 247.
25.
M. V. Markushev, Probl. Mat. Sci., 52, 217 (2007).
26.
E. Avtokratova, O. Sitdikov, M. Markushev, R. Mulyukov. Mat. Sci. Eng. A. 538, 386 (2012).
27.
R. R. Mulyukov, R. M. Imaev, A. A. Nazarov, etc. Superplasticity of ultrafine-grain alloys: experiment, theory, technologies. Moscow: Nauka, 2014, 284 р. (in Russian) [Р. Р. Мулюков, Р. М. Имаев, А. А. Назаров и др. Сверхпластичность ультрамелкозернистых сплавов: эксперимент, теория, технологии. М.: Наука, 2014, 284 с.
28.
O. Sitdikov, S. Krymskiy, M. Markushev, E. Avtokratova, T. Sakai. Rev. Adv. Mater. Sci. 31, 62 (2012).
29.
M. Kh. Rabinovich, M. V. Markushev, M. Yu Murashkin. Met. Sci. Heat Treat. 39, 172 (1997).
30.
M. Kh. Rabinovich, M. V. Markushev, M. Yu. Murashkin. Mater. Sci.Forum 243 – 245, 591 (1997).
31.
M. V. Markushev, M. Yu. Murashkin, M. Kh. Rabinovich. Proc. TMS Meeting on Superplasticity and Superplastic Forming. The Minerals, Metals and Materials Society, Warrendale, Pa. 1998, pp. 3 – 13.
32.
S. Krymskiy, O. Sitdikov and M. Markushev. AIP Conf. Proc. 1785, 040030 (2016); DOI: 10.1063/1.4967087.
33.
M. V. Markushev, Yu. L. Burdastykh, S. V. Krymskiy, O. Sh. Sitdikov. Letters on Materials. 7(2), 101 – 104 (2017). DOI: 10.22226/2410-3535-2017-2-101-104
34.
M. V. Markushev, E. V. Avtokratova, S. V. Krymskiy, O. Sh. Sitdikov. J. Alloys Comp. (2018) (in press).
35.
M. V. Markushev, E. V. Avtokratova, R. R. Ilyuasov, S. V. Krymskiy, O. Sh. Sitdikov. Russian Metallurgy (2018) (in press).
36.
M. Markushev, S. Krymskiy, E. Avtokratova, R. Ilyasov, O. Sitdikov, AIP Conf. Proc. (2017) (in press).
37.
M. V. Markushev, E. V. Avtokratova, R. R. Ilyasov, S. V. Krymskiy, O. Sh. Sitdikov. Phys. Mech. Mater. (2017) (in press). (in Russian) [М. В. Маркушев, Е. В. Автократова, Р. Р. Ильясов, С. В. Крымский, О. Ш. Ситдиков. Физика и механика материалов 2017 (в печати).]