High-temperature heat treatment of hypersonic metallization coatings from pseudoalloy “Fe-Al”

A.N. Grigorchik, E.V. Astrashab, V.A. Kukareko ORCID logo , M.A. Belotserkovsky, A.V. Sosnovsky show affiliations and emails
Received 26 March 2021; Accepted 20 April 2021;
This paper is written in Russian
Citation: A.N. Grigorchik, E.V. Astrashab, V.A. Kukareko, M.A. Belotserkovsky, A.V. Sosnovsky. High-temperature heat treatment of hypersonic metallization coatings from pseudoalloy “Fe-Al”. Lett. Mater., 2021, 11(2) 198-203
BibTex   https://doi.org/10.22226/2410-3535-2021-2-198-203

Abstract

The structural-phase state and durometric characteristics of hypersonic metallization coatings made of falsely alloys "Fe-Al" in the initial state and after heat treatment was investigated. The heat treatment consisted in heating the coating samples to temperatures of 570, 620, 720, 820 and 920 °C, followed by holding for 5, 10 and 20 minutes and air cooling.The structural-phase state and durometric characteristics of hypersonic metallization coatings made of pseudoalloy “Fe-Al” in the initial state and after heat treatment were investigated. The heat treatment consisted in heating the coating samples to temperatures of 570, 620, 720, 820 and 920°C followed by holding for 5, 10 and 20 minutes and air cooling. The phase composition of the “Fe-Al” coating sprayed by hypersonic metallization in the initial state includes α-Fe, Al, Al2O3 and FeO. The hardness of the coating is 220 HV10, and the microhardness of the steel interlayers is 350 HV0.025. It is shown that heat treatment of the coating in the temperature range 570 – 920°С and holding time of 5 – 20 minutes leads to the formation of strengthening intermetallic phases Al5Fe2, Al13Fe4, Fe3Al and FeAl in it. It is shown that the formation of intermetallic compounds in coatings leads to an increase in the microhardness of steel interlayers by up to 1.7 times as compared to the initial state, while an increase in exposure from 5 to 20 minutes at one temperature is accompanied by the formation of a large amount of intermetallic compounds with a high iron content Fe3Al and FeAl. It was found that an increase in the content of aluminum oxide and the formation of iron oxides are recorded under all heat treatment modes. Changes in the macrostructure of the coatings are recorded: as a result of low-temperature annealing at 570 – 620°C, there is a significant increase in the porosity of the coatings up to 15 – 25 vol.%. An increase in the annealing temperature to 720, 820, and 920°С is accompanied by a sequential decrease in the porosity of the coating to 15 – 20, 7 –10, 6 – 8 vol.%, respectively.

References (14)

1. I. A. Seliverstov, G. N. Trotsan, I. V. Smirnov, S. R. Seliverstrov. Scientific bulletin of the Kherson State Maritime Academy. 1 (10), 249 (2014). (in Russian) [И. А. Селиверстов, Г. Н. Троцан, И. В. Смирнов, С. Р. Селиверстрова. Научный вестник Херсонской государственной морской академии. 1 (10), 249 (2014).].
2. A. F. Dresvyannikov, M. E. Kolpakov. Bulletin of Kazan Technological University. 5, 7 (2010). (in Russian) [А. Ф. Дресвянников, М. Е. Колпаков. Вестник Казанского технологического университета. 5, 7 (2010).].
3. G. A. Baglyuk, A. I. Tolochin, A. V. Tolochina, V. S. Kurikhin, R. V. Yakovenko. Resursozberihayuchi tekhnolohiyi vyrobnytstva ta obrobky tyskom materialiv u mashynobuduvanni. 1, 88 (2014). (in Russian) [Г. А. Баглюк, А. И. Толочин, А. В. Толочина, В. С. Курихин, Р. В. Яковенко. Ресурсозберігаючі технології виробництва та обробки тиском матеріалів у машинобудуванні. 1, 88 (2014).].
4. V. S. Rusakov, K. K. Kadyrzhanov, E. E. Suslov, D. A. Plaksin, T. E. Turkebaev. Surface. X-ray, synchrotron and neutron research. 12, 22 (2004). (in Russian) [В. С. Русаков, К. К. Кадыржанов, Е. Е. Суслов, Д. А. Плаксин, Т. Э. Туркебаев. Поверхность. Рентгеновские, синхротронные и нейтронные исследования. 12, 22 (2004).].
5. L. M. Gurevich, D. V. Pronichev, A. F. Trudov, Yu. P. Trykov, M. D. Trunov. Bulletin of the Volgograd State Technical University. 9 (136), 17 (2014). (in Russian) [Л. М. Гуревич, Д. В. Проничев, А. Ф. Трудов, Ю. П. Трыков, М. Д. Трунов. Известия Волгоградского государственного технического университета. 9 (136), 17 (2014).].
6. V. A. Kukareko, M. A. Belotserkovsky, A. N. Grigorchik, E. V. Astrashab. Processing with concentrated energy flows. Hardening technologies and coatings. 15 (8), 355 (2019). (in Russian) [В. А. Кукареко, М. А. Белоцерковский, А. Н. Григорчик, Е. В. Астрашаб. Обработка концентрированными потоками энергии. Упрочняющие технологии и покрытия. 15 (8), 355 (2019).].
7. V. G. Shmorgun, D. V. Pronichev, V. P. Kulevich, O. V. Slautin, N. A. Artemiev. Bulletin of the Volgograd State Technical University. 2 (225), 14 (2019). (in Russian) [В. Г. Шморгун, Д. В. Проничев, В. П. Кулевич, О. В. Слаутин, Н. А. Артемьев. Известия Волгоградского государственного технического университета. 2 (225), 14 (2019).].
8. E. V. Astrashab, A. N. Grigorchik, V. A. Kukareko, M. A. Belotserkovsky. Friction and wear. 41 (1), 12 (2020). (in Russian) [Е. В. Астрашаб, А. Н. Григорчик, В. А. Кукареко, М. А. Белоцерковский. Трение и износ. 41 (1), 12 (2020).].
9. M. A. Belotserkovsky. Technologies of activated flame spraying of antifriction coatings. Minsk, Technoprint Unitary Enterprise (2004) 200 p. (in Russian) [М. А. Белоцерковский. Технологии активированного газопламенного напыления антифрикционных покрытий. Минск, УП «Технопринт» (2004) 200 с.].
10. M. A. Krishtal. Diffusion mechanism in iron alloys. Moscow, Metallurgiya (1972) 400 p. (in Russian) [М. А. Криштал. Механизм диффузии в железных сплавах. Москва, Металлургия (1972) 400 с.].
11. S. B. Bokshtein. Diffusion in metals. Moscow, Metallurgiya (1978) 248 p. (in Russian) [С. Б. Бокштейн. Диффузия в металлах. Москва, Металлургия (1978) 248 с.].
12. V. Zayt. Diffusion in metals. (ed. by B. I. Boltax). Moscow, Foreign Literature Publishing House (1958) 381 p. (in Russian) [В. Зайт. Диффузия в металлах. (под ред. Б. И. Болтакса). Москва, Издательство иностранной литературы (1958) 381 с.].
13. B. Bokshtein, A. Epishin, I. Svetlov, V. Esin, A. Rodin, T. Link. Functional materials. 1 (5), 162 (2007). (in Russian) [Б. Бокштейн, А. Епишин, И. Светлов, В. Есин, А. Родин, Т. Линк. Функциональные материалы. 1 (5), 162 (2007).].
14. Yu. R. Kolobov. Moscow, MISIS Publishing House. (2008) 326 p. (in Russian) [Ю. Р. Колобов. Москва, МИСиС издательский дом (2008) 326 с.].

Similar papers

Funding

1. The Joint Institute of Mechanical Engineering National Academy of Sciences of Belarus -